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Deep learning-based prediction of
Clostridioides difficile infection caused by
antibiotics using longitudinal electronic
health records

Check for updates
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Clostridioides difficile infection (CDI) is a major cause of antibiotic-associated diarrhea and colitis. It is
recognized as one of the most significant hospital-acquired infections. Although CDI can develop
severe complications and spores of Clostridioides difficile can be transmitted by the fecal-oral route,
CDI is occasionally overlooked in clinical settings. Thus, it is necessary tomonitor highCDI risk groups,
particularly those undergoing antibiotic treatment, to prevent complications and spread. We
developed and validated a deep learning-basedmodel to predict the occurrence of CDIwithin 28 days
after starting antibiotic treatment using longitudinal electronic health records. For each patient,
timelines of vital signs and laboratory tests with a 35-day monitoring period and a patient information
vector consisting of age, sex, comorbidities, and medications were constructed. Our model achieved
the prediction performance with an area under the receiver operating characteristic curve of 0.952
(95% CI: 0.932–0.973) in internal validation and 0.972 (95% CI: 0.968–0.975) in external validation.
Platelet count and body temperature emerged as the most important features. The risk score, the
output value of the model, exhibited a consistent increase in the CDI group, while the risk score in the
non-CDI group either maintained its initial value or decreased. Using our CDI prediction model, high-
risk patients requiring symptom monitoring can be identified. This could help reduce the
underdiagnosis of CDI, thereby decreasing transmission and preventing complications.

Clostridioides difficile (C. difficile) is a Gram-positive, anaerobic bacterium
capable of forming spores and producing toxins1. C. difficile infection (CDI)
is a major cause of antibiotic-associated diarrhea and colitis. It is globally
recognized as one of the most significant hospital-acquired infections2,3. In
the United States, there were more than 450,000 cases of CDI reported
annually from 2011 to 2017. Approximately 29,000 deaths related to CDI
were documented4,5. The economic impact of CDI on healthcare costs is
substantial in the United States, amounting to 6.3 billion USD. Annual CDI
hospital management required nearly 2.4 million days of inpatient stay6.
Between 2011 and 2013 in Europe, despite variations among countries, CDI
occurred at a rate of 7.0 cases per 10,000 patient days7. The annual cost of

CDI in Europe was estimated to be €3 billion per year8. In Korea, CDI
occurred at a rate of 5.06 cases per 100,000 patients, with an economic cost
reported to be 15.8 million USD in 20119.

The pathogenesis of CDI is microbial dysbiosis caused by factors such
as antibiotics10. Gut dysbiosis refers to the disruption of the balance of
microorganisms in the gastrointestinal tract, leading to the domination and
colonization of C. difficile in the large intestine1. The virulence of C. difficile
ismostly attributed to enzymes and toxins that can induce the breakdownof
gut barrier integrity and loss of functionality11,12. C. difficile produces two
important toxins, Toxin A and Toxin B, in its pathogenesis. Traditionally,
Toxin A is known as enterotoxin A and Toxin B is known as cytotoxin B.
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Risk factors for CDI are mainly known to be antibiotic exposure, old
age, and hospitalization. Gastric acid suppression, inflammatory bowel
disease, gastrointestinal surgeries, malignancy, transplantations, chronic
kidneydiseases, and immunosuppressant use are also risk factors forCDI1,13.
SevereCDI can lead to the development of pseudomembranous colitis, toxic
megacolon, sepsis, and death14. Spores of C. difficile are transmitted by the
fecal-oral route. Bacterial infection affecting the colon is spread through
both direct and indirect contact. Nevertheless, CDI is occasionally over-
looked in clinical settings even when symptoms are present. Thus, it is
necessary to monitor high CDI risk groups, particularly those undergoing
antibiotic treatment, to prevent complications and spread.

Several studies have employedmachine learning algorithms to predict
CDI in hospitalized patients. However, none of those studies described CDI
prediction performance above an area under the receiver operating char-
acteristic curve (AUROC) of 0.8215–20. Although direct comparisons of these
performances are not reasonable due to variations in data and cohort cri-
teria, the predictive accuracy needs to be enhanced. To the best of our
knowledge, prior studies have not utilized deep learning techniques, such as
recurrent neural network (RNN) and Transformer, which have achieved
great performance in several tasks regarding time-series data, to predict CDI
caused by antibiotics. Furthermore, prior studies have not elucidated
important features for CDI prediction with rational clinical descriptions.

This study aimed to predict the occurrence of CDIwithin 28 days after
starting antibiotic treatment using longitudinal electronic health record
(EHR) data, including vital signs, laboratory tests, and patient information
such as demographics, comorbidities, and medications. We trained several
machine learning and deep learning models to predict CDI and compared
the performances of those models. A timeline of vital signs and laboratory
tests with a 35-day monitoring period and a patient information vector
consisting of age, sex, comorbidities, and medications were constructed for
each patient. The data were collected from two locally separated tertiary
hospitals. All trained CDI prediction models were externally validated.
Important features were deduced from the trained model and CDI risk
variation over time was compared between CDI and non-CDI groups.

Results
Study cohorts and dataset construction
This study included 594,759 patients at Seoul National University Hospital
(SNUH) between January 2001 andDecember 2022 and 520,041 patients at
Seoul National University Bundang Hospital (SNUBH) between January
2004 and December 2021, all of whom aged 18 years or more and received
antibiotics. Following our cohort criteria, 529,049 patients at SNUH and
487,803 patients at SNUBH were excluded. The detailed population flow-
charts are presented in Fig. 1. Finally, the numbers of patients in CDI and
non-CDI groups were 466 and 65,244 in SNUH and 642 and 31,596 in

SNUBH, respectively. Data from SNUHwere used for model development
and internal validation, while data from SNUBH were used for external
validation.

Table 1 shows the baseline characteristics of the included patients. The
baseline characteristics were summarized by the initial monitoring point.
The incidence of CDI stood was around 0.71% in SNUH and 2.00% in
SNUBH. In both hospitals, the CDI group exhibited a higher average age
than the non-CDI group. SNUH had a higher proportion of males in the
CDI group, while SNUBH displayed an opposite trend. Both hospitals
showed similar trends in vital signs and laboratory tests except for total
bilirubin and ALT levels. Regarding comorbidities, the CDI group in both
hospitals had a significantly higher prevalence of most diseases than the
non-CDI group. Furthermore, the CDI group had a larger number of
antibiotics, while antacid usage wasmore frequent in the non-CDI group of
both hospitals.

CDI prediction performance
The performances of CDI prediction models are presented in Table 2.
We fitted tree-based machine learning models, including random
forest and gradient boosting machine (GBM)21, and RNN and
attention-based deep learning models, including simple RNN, long-
short term memory (LSTM)22, gated recurrent unit (GRU)23,
Transformer24, and RETAIN25. These models used in internal and
external validation were selected after grid search cross-validation in
the development process. The results of RNN-based models are
presented in Supplementary Fig. 1. The results of tree-based models
and attention-based models were omitted due to their poor perfor-
mances. Consequently, GRU with two layers and 64 nodes was
selected as the best model. RNN-based models consistently out-
performed both tree-based models and attention-based models.
Simple RNN exhibited the best prediction performance in internal
validation, with an AUROC of 0.968 (0.957–0.979), while GRU
demonstrated the best performance with an AUROC of 0.972
(0.968–0.975) in external validation. For both internal and external
validation, GRU showed the highest areas under the precision-recall
curve (AUPRC) of 0.250 (0.229–0.270) and 0.535 (0.531–0.539),
respectively. We calculated all sensitivities, specificities, precisions,
and F1-scores with Youden’s index26. In internal validation, GRU
obtained the highest sensitivity while LSTM achieved the highest
precision. In external validation, GRU outperformed in all metrics.
Meanwhile, since the choice of sensitivity might vary based on spe-
cific objectives27, the results with fixed sensitivities of 0.9 and 0.95 are
presented in Supplementary Tables 1 and 2. The differences in
AUPRC, precision, and F1-score between hospitals were primarily
due to the higher CDI incidence observed in the external validation

594759 patients with antibiotic prescription and age over 18
in SNUH between January 2001 and December 2022

2139 patients with CDI 
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592620 patients without CDI
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Fig. 1 | Population flowcharts.Data from SNUH were randomly split into development (70% for training and 15% for validation) and internal validation (15%) datasets.
Data from SNUBH were used for external validation.
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Table 1 | Baseline characteristics of the included patients

SNUH (n = 65710) SNUBH (n = 32238) Between
hospitals

Development and internal validation set External validation set

CDI Non-CDI P-value CDI Non-CDI P-value P-value

(n = 466) (n = 65244) (n = 642) (n = 31596)

age 64.54 ± 15.51 57.29 ± 16.72 <0.0001 69.80 ± 16.05 61.76 ± 16.82 <0.0001 <0.0001

male sex 277 (59.44) 35660 (54.66) 0.0399 330 (51.40) 17463 (55.27) 0.0543 0.1382

Vital Signs

SBP (mmHg) 118.22 ± 18.38 118.03 ± 16.77 0.8255 124.84 ± 22.50 126.14 ± 20.21 0.1464 <0.0001

DBP (mmHg) 70.71 ± 11.60 72.23 ± 11.66 0.0049 70.70 ± 15.03 71.82 ± 13.28 0.0623 0.1382

Heart rate (BPM) 85.69 ± 17.79 79.42 ± 16.07 <0.0001 88.16 ± 18.59 82.46 ± 17.36 <0.0001 <0.0001

Respiratory rate (BPM) 19.92 ± 2.61 19.33 ± 1.70 <0.0001 18.97 ± 3.31 18.81 ± 2.60 0.2046 <0.0001

Body temperature (°C) 36.99 ± 0.66 36.54 ± 0.48 <0.0001 36.94 ± 0.77 36.93 ± 0.71 0.6148 <0.0001

Laboratory tests

WBC (103/μL) 10.28 ± 5.50 7.62 ± 3.29 <0.0001 10.16 ± 4.99 9.65 ± 4.66 0.0100 <0.0001

Hemoglobin (g/dL) 10.52 ± 1.79 11.68 ± 1.83 <0.0001 11.44 ± 2.37 12.59 ± 2.23 <0.0001 <0.0001

Platelet (103/μL) 242.84 ± 130.51 271.08 ± 118.56 <0.0001 226.93 ± 112.80 232.68 ± 96.03 0.2000 <0.0001

Neutrophil (%) 74.76 ± 16.95 64.22 ± 13.23 <0.0001 74.66 ± 15.90 71.10 ± 16.11 <0.0001 <0.0001

ANC (103/µL) 8.01 ± 4.74 5.12 ± 2.93 <0.0001 8.01 ± 4.74 7.29 ± 4.47 0.0002 <0.0001

Albumin (g/dL) 2.98 ± 0.51 3.56 ± 0.51 <0.0001 3.38 ± 0.67 3.78 ± 0.65 <0.0001 <0.0001

Total protein (g/dL) 5.79 ± 0.85 6.44 ± 0.74 <0.0001 6.42 ± 0.95 6.69 ± 0.87 <0.0001 <0.0001

Total bilirubin (mg/dL) 0.85 ± 0.57 0.76 ± 0.46 0.0014 0.79 ± 0.47 0.81 ± 0.48 0.2237 <0.0001

AST (IU/L) 29.18 ± 17.23 25.89 ± 14.63 <0.0001 33.62 ± 20.03 33.01 ± 22.47 0.4523 <0.0001

ALP (IU/L) 91.71 ± 50.29 78.52 ± 40.78 <0.0001 98.66 ± 47.36 89.50 ± 42.72 <0.0001 <0.0001

ALT (IU/L) 27.56 ± 22.46 26.06 ± 20.43 0.1540 22.01 ± 19.42 26.09 ± 22.54 <0.0001 <0.0001

BUN (mg/dL) 18.30 ± 11.88 14.32 ± 7.42 <0.0001 21.16 ± 11.63 17.54 ± 9.03 <0.0001 <0.0001

Creatinine (mg/dL) 0.92 ± 0.50 0.85 ± 0.32 0.0081 0.97 ± 0.54 0.90 ± 0.40 0.0005 <0.0001

Sodium (mmol/L) 136.89 ± 5.41 138.49 ± 3.59 <0.0001 137.22 ± 5.37 137.84 ± 4.26 0.0034 <0.0001

Potassium (mmol/L) 3.98 ± 0.54 4.18 ± 0.46 <0.0001 4.07 ± 0.58 4.10 ± 0.49 0.2246 0.6764

Chloride (mmol/L) 102.64 ± 6.11 102.62 ± 4.17 0.9257 102.29 ± 6.07 102.38 ± 4.79 0.6919 <0.0001

Total CO2 (mmol/L) 24.40 ± 4.20 26.01 ± 3.44 <0.0001 22.91 ± 3.80 23.44 ± 3.25 0.0005 <0.0001

CRP (mg/dL) 6.89 ± 6.02 3.38 ± 4.20 <0.0001 6.95 ± 7.69 5.24 ± 7.40 <0.0001 <0.0001

Comorbidities

Malignant tumor 194 (41.63) 19301 (29.58) <0.0001 181 (28.19) 8086 (25.59) 0.1440 <0.0001

Myocardial infarction 11 (2.36) 693 (1.06) 0.0193 22 (3.43) 712 (2.25) 0.0595 <0.0001

Uncomplicated diabetes 46 (9.87) 2089 (3.20) <0.0001 82 (12.77) 2552 (8.08) 0.0001 <0.0001

Complicated diabetes 14 (3.00) 521 (0.80) <0.0001 9 (1.40) 247 (0.78) 0.1074 <0.0001

Renal disease 26 (5.58) 571 (0.88) <0.0001 34 (5.30) 563 (1.78) <0.0001 0.7613

Heart Failure 23 (4.94) 735 (1.13) <0.0001 38 (5.92) 983 (3.11) 0.0002 <0.0001

Metastatic carcinoma 30 (6.44) 1419 (2.17) <0.0001 32 (4.98) 1414 (4.48) 0.5006 <0.0001

Dementia 17 (3.65) 332 (0.51) <0.0001 58 (9.03) 838 (2.65) <0.0001 <0.0001

Cerebrovascular disease 70 (15.02) 3729 (5.72) <0.0001 159 (24.77) 3771 (11.94) <0.0001 <0.0001

Peripheral vascular disease 19 (4.08) 1113 (1.71) 0.0009 36 (5.61) 1024 (3.24) 0.0023 <0.0001

Pulmonary disease 21 (4.51) 982 (1.51) <0.0001 52 (8.10) 1514 (4.79) 0.0004 <0.0001

Liver disease 6 (1.29) 102 (0.16) 0.0001 1 (0.16) 46 (0.15) 0.6117 0.5495

Mild liver disease 27 (5.79) 1984 (3.04) 0.0017 22 (3.43) 1182 (3.74) 0.7529 <0.0001

Peptic ulcer disease 14 (3.00) 323 (0.50) <0.0001 26 (4.05) 570 (1.80) 0.0003 <0.0001

Paraplegia and hemiplegia 11 (2.36) 133 (0.20) <0.0001 10 (1.56) 138 (0.44) 0.0008 <0.0001

Connective tissue disease 4 (0.86) 601 (0.92) 1.0000 4 (0.62) 236 (0.75) 1.0000 0.0052

HIV 2 (0.43) 55 (0.08) 0.0620 0 (0.00) 5 (0.02) 1.0000 <0.0001

Drug usage

Number of antibiotics 2.84 ± 1.70 2.31 ± 1.44 <0.0001 2.83 ± 1.57 2.25 ± 1.44 <0.0001 <0.0001

Antacid usage 213 (45.71) 42031 (64.42) <0.0001 260 (40.50) 19674 (62.27) <0.0001 <0.0001

All data are shown as mean ± SD and n (%).
P-values were calculated by the Student’s t-test for continuous variables and the Fisher’s exact test for categorical variables.
SBP systolic bloodpressure,DBPdiastolic bloodpressure,BPMbeats (breaths) perminute,WBCwhite blood count,ANC absolute neutrophil count,AST aspartate transferase,ALP alkaline phosphatase,
ALT alanine transaminase, BUN blood urea nitrogen, CRP C-reactive protein, HIV human immunodeficiency virus.
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dataset. The receiver operating characteristic (ROC) and precision-
recall curves of all experiments are shown in Fig. 2.

Considering that it is practically challenging to collect all features, we
validated the GRU-based model with subsets of the features. We cate-
gorized the features including vital signs and laboratory tests into four
groups: vital signs (SBP, DBP, heart rate, respiratory rate, body tem-
perature), complete blood count (CBC) test (WBC, hemoglobin, platelet,
neutrophil, ANC)28, liver function (LF) test (albumin, total protein, total
bilirubin, AST, ALP, ALT)29,30, and renal function (RF) test (BUN, crea-
tinine, sodium, potassium, chloride, total CO2)31,32. Those items in each
group are usually measured together. CRP was excluded from categories
because CRP is an independent test widely used to detect bacterial
infection33. We validated our model with data that utilized only selected
feature groups and masked the rest. In addition, considering potential
missingness, we randomly masked 20% of the used features and validated
the model. When only vital signs and CBC tests were utilized, the per-
formance was slightly dropped, with AUROC decreasing from 0.952 to
0.933 in internal validation and from 0.972 to 0.947 in external validation.
Even when the random masking strategy was applied, the AUROC

remained higher than 0.9 in most cases. These results are summarized in
Supplementary Table 3.

Feature importance analysis
We used Deep SHAP34 to identify important features for deep learning-
based CDI prediction. The SHAP values of vital signs, laboratory tests, and
patient information in bothhospitals exhibited similar patterns, as shown in
Fig. 3. This process usedGRUas a referencemodel because itwas selected as
the best model in the development process. Body temperature and platelet
count emerged as the two most influential variables, followed by ANC,
BUN, neutrophil percentage, potassium, sodium, and CRP. Malignant
tumors showed a relatively high SHAP value in internal validation. How-
ever, most comorbidities had a minimal impact on results. Notably, the
number of antibiotics used and antacid usage exhibited the highest SHAP
values among patient information in both hospitals.

Risk variation over time
To assess temporal differences in risk variation between CDI and non-CDI
groups, we calculated continuous risk scores by sequentially entering

Table 2 | Performance for detecting Clostridioides difficile infection

AUROC P-value AUPRC Sensitivity Specificity Precision F1-score

Internal validation

Tree-based model

Random forest 0.834
(0.791–0.877)

0.049
(0.006–0.092)

0.660
(0.651–0.668)

0.875
(0.870–0.881)

0.037
(0.034–0.040)

0.070
(0.065–0.074)

GBM 0.853
(0.813–0.894)

0.1493 0.070
(0.029–0.111)

0.702
(0.694–0.710)

0.868
(0.862–0.874)

0.037
(0.034–0.040)

0.070
(0.066–0.075)

RNN-based model

Simple RNN 0.968
(0.957–0.979)

<0.0001 0.165
(0.154–0.176)

0.936
(0.932–0.940)

0.877
(0.871–0.883)

0.052
(0.048–0.056)

0.099
(0.094–0.104)

LSTM 0.939
(0.918–0.961)

0.0001 0.118
(0.096–0.140)

0.894
(0.888–0.899)

0.891
(0.885–0.896)

0.056
(0.052–0.060)

0.105
(0.099–0.110)

GRU 0.952
(0.932–0.973)

<0.0001 0.250
(0.229–0.270)

0.936
(0.932–0.940)

0.862
(0.856–0.867)

0.046
(0.043–0.050)

0.088
(0.084–0.093)

Attention-
based model

Transformer 0.871
(0.837–0.904)

0.1053 0.074
(0.040–0.108)

0.755
(0.748–0.763)

0.839
(0.833–0.845)

0.033
(0.030–0.036)

0.063
(0.059–0.067)

RETAIN 0.746
(0.699–0.793)

0.0271 0.025
(0.000–0.072)

0.777
(0.769–0.784)

0.634
(0.626–0.642)

0.015
(0.013–0.017)

0.030
(0.027–0.033)

External validation

Tree-based model

Random forest 0.833
(0.818–0.847)

0.086
(0.071–0.100)

0.808
(0.804–0.813)

0.742
(0.738–0.747)

0.060
(0.057–0.063)

0.112
(0.108–0.115)

GBM 0.860
(0.847–0.873)

<0.0001 0.118
(0.105–0.131)

0.773
(0.768–0.777)

0.799
(0.795–0.804)

0.073
(0.070–0.075)

0.133
(0.129–0.136)

RNN-based model

Simple RNN 0.958
(0.953–0.963)

<0.0001 0.241
(0.237–0.246)

0.935
(0.932–0.937)

0.881
(0.878–0.885)

0.138
(0.134–0.142)

0.241
(0.236–0.245)

LSTM 0.940
(0.934–0.947)

<0.0001 0.271
(0.264–0.277)

0.914
(0.911–0.917)

0.831
(0.827–0.836)

0.099
(0.096–0.103)

0.179
(0.175–0.183)

GRU 0.972
(0.968–0.975)

<0.0001 0.535
(0.531–0.539)

0.938
(0.935–0.940)

0.884
(0.881–0.888)

0.141
(0.138–0.145)

0.246
(0.241–0.251)

Attention-
based model

Transformer 0.871
(0.858–0.883)

<0.0001 0.179
(0.166–0.191)

0.807
(0.803–0.811)

0.786
(0.781–0.790)

0.071
(0.068–0.074)

0.131
(0.127–0.134)

RETAIN 0.755
(0.735–0.774)

<0.0001 0.091
(0.071–0.110)

0.572
(0.566–0.577)

0.803
(0.799–0.808)

0.056
(0.053–0.058)

0.102
(0.098–0.105)

Bold indicates the best and underline indicates the second best.
P-values were calculated using the DeLong method. Sensitivity, specificity, precision, and F1-score were calculated using Youden’s index.
AUROC area under the receiver operating characteristic curve, AUPRC area under the precision-recall curve, GBM gradient boosting machine, RNN recurrent neural network, LSTM long short-term
memory, GRU gated recurrent unit.
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timelines ranging from two days to 35 days to the trained model. The risk
scorewas the output value of themodel. GRU served as a referencemodel in
this process. Risk score variations over time are shown in Fig. 4. Across the
timeline, the risk score in the CDI group exhibited a consistent increase,
while the risk score in the non-CDI group either maintained its initial value
or decreased. The CDI group had a higher risk score than the non-CDI
group initially. This difference in risk score became bigger as time
progressed.

Discussion
In this study,wedeveloped and validated severalmachine learning anddeep
learning-based CDI prediction models using longitudinal EHR data,
including a total of 97,948 patients. For internal and external validation, we
used large multicenter datasets from two locally separate tertiary hospitals,
SNUH and SNUBH. The model trained with GRU exhibited the best pre-
diction performance with an AUROC of 0.952 for internal validation and
0.972 for external validation. In addition, we identified influential features
for CDI prediction through Deep SHAP and assessed temporal differences
in risk variation between CDI and non-CDI groups.

The CDI prediction model developed in this study demonstrated
superior performance compared to previous studies. Panchavati et al.
exhibited CDI detection performance with an AUROC of 0.815 using six
hours of inpatient data and XGBoost15. Oh et al. formulated a CDI pre-
diction model using inpatient data and logistic regression, yielding an
AUROCof 0.82016.Marra et al. performed a cross-sectional studywith EHR
to predict CDI occurrences three days in advance with an AUROC of
0.60417. Wiens et al. trained support vector machine and hidden Markov
model for CDI prediction, and achieved an AUROC of 0.79 and 0.75,
respectively19,20. Regarding CDI caused by antibiotics, Werkhoven et al.
performed multiple logistic regression and detected CDI in patients
receiving antibiotic therapy with an AUROC of 0.81 18.

The CDI prediction model has a potential advantage in reducing CDI
transmission and preventing complications in clinical settings by reducing
underdiagnosis of CDI using patient trajectory. CDI is usually diagnosed by
stool examinations such as nucleic acid amplification testing (NAAT),
glutamate dehydrogenase (GDH), and enzyme immunoassay (EIA).NAAT
and GDH are known to have high sensitivity and yield rapid results.
Although EIA exhibits variations in sensitivity, it maintains a high
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specificity. The diagnostic process for CDI employs a multistep procedure
that includes performing EIA if NAAT or GDH is positive. It is typically
initiated when new-onset unformed stools occur more than three times
within 24 h14. However, rate of CDI underdiagnosis remains significant
despite current diagnostic strategy35–37. Lack of suspicion is one of the
important reasons for underdiagnosis38. Improvement in the diagnostic

process through monitoring systems for CDI in high risk patients is
necessary. Our predictionmodel could be utilized to identify patients at risk
of developing symptoms. Among the patients who are assigned high risk
scoresby thepredictionmodel, symptomatic patients should be isolated and
undergo stool test, while asymptomatic patients should be closely observed
for symptom development. This approach could help reduce the
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underdiagnosis of CDI, thereby decreasing transmission and preventing
complications. Furthermore, our model showed that the difference in risk
score between CDI and non-CDI groups gradually widened over time. This
trend implies that clinicians can consider the potential risk of CDI despite
the lack of symptoms if the risk score remains high or increases after anti-
biotic treatment.

Platelet count and body temperature emerged as the two most
important features among vital signs and laboratory tests, while the number
of antibiotics used and antacid usage stood out as key attributes within
patient information. Elevated body temperature is recognized as one of the
main symptoms of CDI1. Platelet level also plays a significant role in CDI, as
evidenced by a study indicating associations between abnormal platelet
levels and CDI outcomes39. Thrombocytosis is associated with inflamma-
tion given that platelets are considered to be acute phase reactants40. On the
other hand, thrombocytopenia is associated with underlying diseases such
as malignancies, hepatic diseases, and immunosuppression, all of which are
risk factors forCDI13. Thenumber of antibiotics usedduring theobservation
period correlates with the duration of antibiotic use. In caseswhere a patient
remains unresponsive to antibiotic treatment, there is a suspicion of
antibiotic-resistant bacteria, prompting a switch to a broad-spectrum
antibiotic.However, the risk ofCDI tends to increase as antibiotic treatment
continues1, as the rising trend of risk scorewas exhibited in theCDI group in
our study. It has been reported that gastric acid suppression might have an
influence on CDI development41,42. However, there is still controversy as
several studies exhibited conflicting results43,44. A notable finding was the
significantly lower use of antacids among patients with CDI. The reduced
antacidusage in this groupmight be attributed to considerations of potential
drug interactions, as the CDI group presented with a higher prevalence of
underlying diseases 45.

In this study, Transformer outperformed tree-based models in CDI
prediction. However, RNN-based models exhibited much better perfor-
mances. Although Transformers are gaining widespread usages in various
fields such as natural language processing (NLP), they were found to be less
suitable for training on short numeric timelines (maximum 35 days) in our
dataset thanRNN-basedmodels.This contrastmightbeattributed todiffering
ways in which RNNs and Transformers handle input data: RNN processes
data sequentially, while Transformer takes in data all at once with positional
encoding and learns relationships between variables with less susceptibility to
temporal and sequential dependencies. Several studies dealing with numeric
time-series data have employed RNNs for capturing sequential changes46–48.
On theother hand,RETAIN, an interpretable attention-basedneural network
model for temporal EHR data, was initially developed for binary EHR vari-
ables.Consequently, it didnot performaswell in ourdataset,which contained
numerous continuous numeric variables in timelines.

Regarding cohort definition, we did not include patients with missing
values in our dataset, although eliminating patient records with missing
features might introduce a potential bias in models because many patients
were excludedby the criterion.Considering thepotential bias,we conducted
an experiment without eliminating any patients with missing features.
Instead, we only excluded patients with any missing vital signs. In SNUH,
there were 1092 patients in the CDI group and 298,531 in the non-CDI
group. InSNUBH, therewere 1563patients in theCDIgroupand301,984 in
the non-CDI group. We then imputed missing values using multivariate
imputation by chained equations (MICE)49. In this case, the performance of
the random forest in internal validation had an AUROCof 1.0. Respiratory
rate and CRP were the two most important variables in the random forest.
Even when we trained another random forest with only those two variables
and patient information, the AUROC was still 1.0. This implies that the
model learned the imputation pattern of missing values reflecting the test
pattern, which was relatively easy to learn, rather than the temporal varia-
tion of patient trajectory. The GRU-basedmodel also exhibited an AUROC
of 1.0 in internal validation. However, a significant decrease in performance
was seen in external validationwith anAUROCof 0.84. Test items routinely
measured may vary between hospitals according to the policy of each
hospital or regionality, and the model that learned test patterns did not

perform well in the external cohort. Nevertheless, the original missingness
criterion might be difficult to be satisfied in clinical practice. Thus, we
validated our model by applying various mitigated missing conditions.
Using only vital signs andCBC test, themodel achievedanAUROCof 0.933
in internal validation and 0.947 in external validation. Even with a random
masking strategy, the model maintained a high performance with an
AUROC of 0.929 in internal validation and 0.904 in external validation.

This study has several limitations. First, it was a retrospective studywith
potential selectionbias.However, itwasnoteworthy thatourpredictivemodel
maintained good performance in both cohorts, which had different baseline
characteristics and the number of events. Second, we monitored only four
weeks from the index date.A previous study has reported that the risk ofCDI
is the highest in the first month after antibiotics use and that it persists until
three months50. Accordingly, we excluded patients in the non-CDI group
who developed CDI within 12 weeks after antibiotics use. However, we
monitored themfor fourweeks, considering the lackof enoughvital signs and
laboratory test data. Further studies with prolonged monitoring periods are
needed. Third, the prevalence ofCDIwas low in both cohorts.Whilewe used
Focal loss51 to address class imbalance, deep learningmodels often suffer from
those extreme class imbalances.However, the incidence of CDI in the general
inpatientpopulationhasbeen reported tobeunder 2%, and this confirms that
our datasets reflected real-world data52. In addition, the results of internal and
external validation showed similar trends, lending reliability to our findings.
Fourth, records of gastrointestinal symptomswere not included in this study.
Our model was based on EHR, which included measurements, drugs, and
diagnoses records. Symptoms such as diarrhea are usually documented in
nursing records.Unfortunately,we couldnotobtainnursing recordsowing to
internal circumstances.However, if nursing records are accessible andmodels
are trained with symptom history, the appropriate time to use themodel can
be specified based on symptoms. In addition, prediction performance might
be improved with more sophisticated data. Fifth, we did not include patients
with missing values in this study. This exclusion was to prevent the model
from training test patterns, which might vary between hospitals, rather than
the temporal variationofpatient trajectory.However, further investigationon
handling missing values for longitudinal EHR-based time-series data is
required for expanding the study population and generalizing the prediction
model. Sixth,wehaveprovided several pieces of clinical evidence that support
our feature importance analysis and have conducted a sub-analysis with
subsets of the features, but prospective studies utilizing ourmodel are needed
to completely evaluate the practical suitability of our model.

In conclusion, we developed a high-performing deep learning-based
CDI prediction model from patients with antibiotic treatment. The model
was internally and externally validated using data from two locally separate
tertiary hospitals. The CDI prediction model can reduce underdiagnosis of
CDI and can contribute to the goal of decreasing transmission and pre-
venting complications. This study had limitations in data acquisition,
monitoring period, class imbalance, and datamissingness. For futureworks,
prospective studies on additional data of gastrointestinal symptoms are
needed to specify an appropriate time to use the prediction model, to dis-
cover better models with expanded monitoring periods, and to further
investigate how to handle missing values.

Methods
Data curation
This study used data from the SNUH between January 2001 andDecember
2022 and the SNUBH between January 2004 and December 2021. All data
were collected from the Observational Medical Outcomes Partnership
(OMOP) Common Data Model (CDM)53. OMOP is a public-private
partnership established in theUnited States to inform the appropriate use of
observational healthcare databases and study the effects of medical pro-
ducts. OMOP CDM provides standard-based data analysis solutions that
support EHR from different sources into a standard data structure, which
enables large-scale data analysis. Data fromSNUHwere randomly split into
development (70% for training and 15% for validation) and internal vali-
dation (15%) datasets. Data fromSNUBHwere used for external validation.
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The Institutional Review Boards (IRB) at SNUH (IRB No. 2308-101-
1459) and SNUBH (IRB No. X-2308-846-906) granted a waiver of approval
and informed consent, considering that the data used in this study were de-
identified and based on observational electronic medical records from the
OMOP CDM. This retrospective, multicenter study was conducted in
agreement with the Declaration of Helsinki, the Korean Bioethics and Safety
Act (Law No. 16372), and the Human Research Protection Program–
Standard Operating Procedure of Seoul National University Hospital.

Cohort definition and main outcomes
Patients with antibiotic prescriptions aged over 18 years were identified and
divided into two groups according to whether the first C. difficile test was
positive or not. We used a C. difficile toxin test with EIA for the diagnosis of
CDI. Exclusion criteria for the CDI group were as follows: We first excluded
patients who had no antibiotic prescriptions within 28 days before C. difficile
test. Then, patientswithCDI that occurredwithin two days (washout period)
after the index date of antibiotics (start of antibiotics) were also excluded,
assuming that CDI did not occur due to antibiotics but for other reasons. To
remove the potential redundant effect of antibiotics, we excluded the patients
with past antibiotic prescriptions within 28 days before the index date. The
non-CDI group included patients who had CDI after the first C. difficile test
and patients who had never experiencedCDI. For the former case, thosewho
were diagnosed with CDI within 12 weeks after antibiotic treatment were
considered to be at potential risk for CDI, and thus, they were excluded. For
both positive and negative groups, patients with any missing vital signs and
laboratory testswithin both sevendays before and28days after the indexdate
and patients with previous colectomy procedures were excluded. A brief
illustration of the index date definition is shown in Fig. 5.

Data preprocessing
Weusedvital signs, laboratory tests, andpatient information (including age,
sex, comorbidity records, the number of antibiotics used, and antacids
usage). OMOP CDM concept IDs of antibiotics, antacids, vital signs,
laboratory tests, and colectomy procedures used in this study are shown in
Supplementary Tables 4–7. For each patient, we constructed a timeline of
vital signs and laboratory tests with patient information vectors. To con-
struct a timeline, we first generated a table with 35 columns, implying the
maximum monitoring period. Each column represented a sequential date.
The last column was set as the last day. For each vital sign and laboratory
item, values were filled in on each date. Blank parts between tests were
linearly interpolated. Front and back parts of the timelinewithout tests were
padded with the first and last measured vital signs and laboratory tests,
respectively. A patient information vector consisted of age, sex, comorbidity
records, the number of antibiotics used, and antacids usage. Age and the
number of antibiotics used were numeric, while the rest variables were
binary. All numeric variables of patient information, vital signs, and
laboratory tests data were standardized before training.

Model development
We trained three kinds of models: tree-based model (including random
forest and GBM as a baseline), RNN-based model (including simple RNN,
LSTM, and GRU), and attention-based model (including Transformer and
RETAIN). As tree-based models were trained with one-dimensional vec-
tors, we concatenated the first and last columns of the timeline and patient
information vector of each patient. This implies that tree-basedmodels also
used vital signs and laboratory tests before and after the index date as other
deep learning models. In the case of RNN and attention-based models, a
timeline was fed into the RNN or attention layer and a patient information
vector was inputted into the fully connected (dense) layer. The outputs of
those layers were then merged, and entered another dense layer to classify
CDI or normal cases. A brief illustration of the process of CDI prediction
using deep learning models is shown in Fig. 6.

We used grid search cross-validation to find the best-performing
model. For tree-based models, the number of trees (from 20 to 200 in 20
intervals), the maximum depth of the tree (one to ten and infinite), and the
maximum number of features to consider when looking for the best split
(one to ten and the number of features) were used as hyperparameters. For
RNNand attention-basedmodels, the number of RNN and attention layers
(one to five) and the number of nodes in all hidden layers (32, 64, 128, 256,
and 512) were used as hyperparameters. In the case of Transformer, the
number of heads for multi-head attention was set to eight. The batch size
was set to 256.WeusedFocal loss51 to address the extreme class imbalanceof

Event (CDI)

< 28 days

Washout period (2 days)
> 28 days

7 days

Index date
(Start of antibiotics)

Monitoring period

Previous end of
antibiotics

Fig. 5 | Index date definition. We monitored patient records between seven days
before and 28 days after the index date, with the maximum length of the monitoring
period of 35 days.
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Fig. 6 | The process of Clostridioides difficile infection prediction using tree-
based and deep learning models. Timeline variables (vital signs and laboratory
tests) were fed into the RNN or attention layer, while patient information variables
were fed into the fully connected (dense) layer. The output vectors of those two layers

were concatenated and fed into another fully connected layer to predict CDI. For
tree-basedmodels, we transformed timeline and patient information data into a one-
dimensional vector by concatenating the first and last columns of the timeline and
patient information vector.
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the dataset and Adam optimizer54 with a learning rate of 0.0001. Themodel
was trained for a maximum of 100 epochs. Early stopping was set with a
patience of 20 on the performance measured using the AUROC. All
experiments during the development process were performed across five
random seeds. The models with the best mean performance were selected
andused for internal and external validation. Scikit-learn (version1.0.2) and
Pytorch (version 1.12.0) in Python (version 3.8.10) were used for tree-based
and deep learning-based models, respectively.

Identifying important features
To identify important features for deep learning-based CDI predic-
tion, we used Deep SHAP, an enhanced version of the DeepLIFT
algorithm55. Deep SHAP could compute attribution scores of all nodes
and approximate Shapley values implying feature importance scores.
Regarding the timeline for each patient, we computed the total
absolute SHAP values across all days and then averaged these summed
SHAP values across all patients to identify significant vital signs and
laboratory items. As for patient information vectors, we similarly
averaged the absolute SHAP values across all patients to discern the
crucial patient information. SHAP (version 0.42.1) package in Python
(version 3.8.10) was used for SHAP value calculation.

Statistical analysis
Characteristics such as age, sex, vital signs, laboratory tests, comorbidities,
and drug usage (the numberof antibiotics used and antacids usage) between
CDI and non-CDI groups and between hospitals were compared by cal-
culating P-values using the Student’s t-test for continuous variables and
the Fisher’s exact test for categorical variables. To measure and compare
the performances of themodels, we usedAUROCandAUPRC.Confidence
intervals (CIs) of AUROC and AUPRC were calculated using DeLong’s
method56, while those of sensitivity, specificity, precision, and F1-score were
calculated using Wilson’s method57. Statistical significance was set at
α = 0.05. All statistical analyses were performed using scikit-learn (version
1.0.2) in Python (version 3.8.10).

Data availability
The raw data used in this study are not publicly available to preserve par-
ticipant privacy. The data generated and analyzed during this study are
available from the corresponding author upon reasonable request.

Code availability
Codes for training deep learning models and tree-based models, feature
importance analysis, and statistical analysis are available at our GitHub
repository (https://github.com/kicarussays/drugsafe_EHR).
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