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Abstract

Recent advancements in artificial intelligence have signifi-
cantly improved the automatic generation of radiology re-
ports. However, existing evaluation methods fail to reveal
the models’ understanding of radiological images and their
capacity to achieve human-level granularity in descriptions.
To bridge this gap, we introduce a system, named ReXKG,
which extracts structured information from processed reports
to construct a comprehensive radiology knowledge graph. We
then propose three metrics to evaluate the similarity of nodes
(ReXKG-NSC), distribution of edges (ReXKG-AMS), and
coverage of subgraphs (ReXKG-SCS) across various knowl-
edge graphs. We conduct an in-depth comparative analysis of
AI-generated and human-written radiology reports, assessing
the performance of both specialist and generalist models. Our
study provides a deeper understanding of the capabilities and
limitations of current AI models in radiology report genera-
tion, offering valuable insights for improving model perfor-
mance and clinical applicability.

Introduction
Artificial Intelligence (AI) models have recently achieved
remarkable success in interpreting medical images (Ra-
jpurkar and Lungren 2023; Rajpurkar et al. 2022). Among
them, radiology report generation stands out as a crucial task
in medical imaging, providing essential information for fur-
ther diagnosis and treatment planning (Liu, Tian, and Song
2023; Reale-Nosei et al. 2024). Its significance has led to
a surge in research focused on developing AI models ca-
pable of generating these reports (Zhang et al. 2020; Liu
et al. 2024). However, in-depth understanding radiology re-
port generation models’ performance is a challenging yet
important task for real clinical usage.

Various automated evaluation metrics have been proposed
specifically for report generation, such as RadCliQ (Yu et al.
2023), FineRadScore (Huang et al. 2024), RaTEScore (Zhao
et al. 2024) and GREEN (Ostmeier et al. 2024), etc. These
metrics have gradually approached the quality of radiolo-
gists’ evaluations. Yet, most existing metrics rely on report-
to-report comparisons, which fail to fully capture a model’s
holistic understanding of radiological images or its capac-
ity to match the descriptive granularity used by humans.
For example, when a doctor mentions “edema” in a re-
port, they may use nuanced modifiers such as “moderate”,

“mild”, “unchanged”, “decreased”, or “stable” to convey
precise details. In contrast, a model might not capture this
level of detail or variation in terminology. It is essential to
develop evaluation methods considering the comprehensive-
ness of medical terminology understanding. These insights
can guide the improvement of report generation models, en-
suring they are better aligned with the professional descrip-
tions used by radiologists.

In this paper, we target assessing AI models from a differ-
ent perspective by focusing on the radiological knowledge
learned by the model. To accomplish this, we introduce a
system named ReXKG, designed to extract structured in-
formation from processed reports and construct a compre-
hensive radiology knowledge graph. As shown in Figure 1,
this graph will capture relationships between anatomical
structures, pathologies, imaging findings, medical devices,
and procedures, creating a rich, queryable representation of
radiological knowledge. We propose three novel metrics:
ReXKG-NSC for assessing node similarity, ReXKG-AMS
for evaluating edge distribution, and ReXKG-SCS for mea-
suring subgraph coverage across knowledge graphs. These
metrics allow for a global score comparison between models
and against human radiologists, providing a comprehensive
understanding of the model’s performance.

Based on the knowledge graph and proposed metrics, we
conduct a comprehensive analysis of both specialist and
generalist report generation models, exploring the following
questions and summarizing the main conclusions for each:
Q1: Coverage of Entities. How well do the generated re-
ports cover essential entities such as anatomy and disorders?
Generalist models demonstrate broader coverage, capturing
nearly 80% of essential entities, yet they still fall short of
matching the depth of radiologist-written reports, particu-
larly in detailing medical devices.
Q2: Coverage of Relationships Between Entities. How
comprehensively do the AI reports describe connections be-
tween different medical findings and their descriptions? All
AI models show significant gaps compared to radiologist-
written reports in capturing relationships between different
entities, with MedVersa leading, achieving nearly 80% cov-
erage of the top 10% subgraphs.
Q3: Coverage of Concepts or Descriptors. How detailed
and comprehensive are the descriptions of disorders and
anatomical features? AI models tend to overfit specific con-
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Figure 1: An illustration of Learning from Knowledge Graph.

cepts that appear frequently in the training data, resulting in
less detailed and occasionally hallucinated descriptions.
Q4: Quantitative Measurements Coverage. How fre-
quently does the model provide quantified measurements of
disorders? AI model’s behavior in providing size descrip-
tions correlates strongly with the frequency of size descrip-
tions for specific disorders in the training data.
Q5: Specialist vs. Generalist Models. What are the perfor-
mance differences between specialist and generalist mod-
els? Generalist models, trained on multiple modalities of
data, demonstrate significantly enhanced radiology knowl-
edge compared to specialist models. This suggests that expo-
sure to a broader range of medical data and tasks contributes
to a more comprehensive and accurate representation of ra-
diological concepts and relationships.

Knowledge Graph Construction
In this section, we present our system (ReXKG) for con-
structing a comprehensive knowledge graph from a large
corpus of radiology reports, shown in Figure 2. We first de-
fine an information extraction schema tailored to the radi-
ology domain, then once the entities and relationships are
extracted, we proceed with the node construction pipeline to
ensure data consistency and integrity. Finally, we integrate
the information into the graph structure.

Information Extraction Schema
Definition. We define an entity as a continuous span of
text that can include one or more adjacent words. Entities in
our schema are categorized into six types as listed.

• Anatomy: anatomical structures within the body.
• Disorder: any abnormal findings or diseases identified

within radiology reports.
• Concept: descriptors used to modify other entities, for

example, ”acute”, ”severe”, and ”increasing”.
• Device: any instrument or apparatus used for medical

purposes, for example, “tube”, “clip”, “wire”.
• Procedure: medical procedures used to diagnose, mea-

sure, monitor, or treat conditions, such as “sternotomy”.

• Size: measurements of disorders or anatomical struc-
tures, for example, “3-mm”.

We define a relation as a directed edge between two entities.
Following the previous work (Jain et al. 2021a), our schema
uses three relations as listed.

• Suggestive of: source entity (e.g., findings) may suggest
the presence of the target entity (e.g., a disease).

• Located at: source entity is located at the target entity.
• Modify: source entity modifies or provides additional in-

formation about the target entity.

Entity and Relation Extraction. Given a set of radiol-
ogy reports, we first annotate a subset using GPT-4 (Achiam
et al. 2023) to generate labeled entities and relations. The
prompts used for annotation are provided in the appendix.
Based on the annotated data, we train the model using the
Princeton University Relation Extraction system (PURE)
architecture (Zhong and Chen 2021) to do Named Entity
Recognition (NER). This architecture employs a pipeline
approach, decomposing the tasks of entity recognition and
relation extraction into separate subtasks. Once the model is
trained, we apply it to the entire dataset to perform inference,
extracting all relevant entities and relations.

Nodes Construction
Following entity extraction, we employ a series of steps
to remove noise, merge synonyms, and link entities to the
Unified Medical Language System (UMLS) (Bodenreider
2004). First, we determine the entity type of each extracted
entity based on the most frequently predicted type by the
NER model to ensure consistency and accuracy. Next, we
utilize ScispaCy (Neumann et al. 2019) to retrieve UMLS
attributes for each entity, such as Concept Unique Identi-
fiers (CUI), Type Unique Identifiers (TUI), definitions, and
aliases. Entities that cannot be mapped to a UMLS item
are retained for further processing. For entities identified as
aliases of a specific term in UMLS, we normalize these en-
tities by merging them into a single concept. For instance,
entities such as “pulmonary” and “lung” are normalized to
their corresponding CUI C0024109. Additionally, to ensure
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Figure 2: Overview of the proposed knowledge graph construction system ReXKG. (a) The information extraction system for
entity and relation extraction. (b) The node construction pipeline. (c) Illustration of edge construction.

the compactness and unambiguity of nodes, for the multi-
word entities, if all individual words of such an entity are
predicted as separate nodes, the combined multi-word entity
is not included as a node. The detailed algorithm is provided
in the appendix. Finally, we leverage medical language mod-
els to merge entities based on semantic similarity. Entities
with an embedding similarity higher than a defined threshold
are combined. This step enhances the graph’s coherence by
aggregating semantically similar concepts into single nodes.

Edges Construction
Initially, all relations are extracted from the dataset as triplets
(source entity, target entity, relation). We merge different
triplets with the same source and target entities based on
node aliases. When two nodes are linked by multiple rela-
tion types, we retain the relation type most frequently pre-
dicted by the model. Finally, we filter the relations by ig-
noring triplets with a count less than C, a hyperparameter
ensuring the reliability of the connections within the graph.

Knowledge Graph Evaluation Metrics
To evaluate knowledge graphs obtained from different mod-
els, we introduce three metrics that assess node simi-
larity, edge distribution similarity, and subgraph cover-
age: ReXKG-NSC (Node Similarity Coefficient), ReXKG-
AMS (Adjacency Matrix Similarity), and ReXKG-SCS
(Subgraph Coverage Score). In the following, we will first
provide a preliminary definition of the knowledge graph and
then detail the calculation methods for these metrics.

Preliminary Definition
Assume we have a knowledge graph with N nodes and M
edges. The set of nodes is denoted as V = {v1, v2, . . . , vN}.
The weights of the nodes are represented as WV =
{wv1 , wv2 , . . . , wvN }, where where wvi corresponds to the
frequency of node vi in the data. The set of edges is de-
noted as E = {e1, e2, . . . , eM}, where each edge em con-
nects a pair of nodes (vi, vj). The weights of the edges are
represented as WE = {we1 , we2 , . . . , weM }, where wem =

count(em). Then, the adjacency matrix is defined as A, with
Aij = weij , representing the weight of the edge between
nodes vi and vj .

KG Node Similarity Coefficient
Let KG-GT represent the knowledge graph built from the
ground truth reports, consisting of N nodes. Similarly, let
KG-Pred represent the knowledge graph built from the gen-
erated reports, consisting of P nodes. For each node vi in
KG-GT, we identify the most similar node in KG-Pred, as-
signing a similarity score si based on calculations from a
medical language model. The overall node similarity metric
is then calculated as the average of these similarity scores
across all nodes in KG-GT. This can be expressed as:

KG-NSC =
1

N

N∑
i=1

si. (1)

KG Adjacency Matrix Similarity
For each node vi in KG-GT, we identify the most similar
node in KG-Pred. This allows us to map all edges in KG-
Pred using the nodes from KG-GT, resulting in the creation
of two adjacency matrices, APred and AGT , both of the
same size. Where Aij represents the weight of the edge be-
tween nodes i and j. We use the Pearson correlation coeffi-
cient metrics to evaluate the coverage of relations in gener-
ated reports compared to the ground truth. The row weight
wri is used as the weight, and the Pearson correlation coeffi-
cient as the value. Here, for a given row i, the row weight is
defined as wri = (

∑
j Aij)/(

∑
i

∑
j Aij), where Aij repre-

sents the element at row i, column j of the adjacency matrix.
Thus, the adjacency matrix similarity can be expressed as:

KG-AMS =

∑N
i=1 (wri · corr(APred,i, AGT,i))∑N

i=1 wri

, (2)

where corr(APred,i, AGT,i) is the Pearson correlation co-
efficient between the i-th rows of APred and AGT , and wri
is the weight of all edges associated with the i-th row.



KG Subgraph Coverage Score
Let S be the set of all connected subgraphs in KG-GT up to
a size of k nodes. We quantify a model’s ability to represent
important subgraphs from KG-GT within KG-Pred, which
can be expressed as:

KG-SCS =

∑K
i=1 I(Si) · P (Si)∑K

i=1 I(Si)
, (3)

where K is the number of top important subgraphs consid-
ered. I(Si) is the importance score of each subgraph Si in
KG-GT and P (Si) is the presence score in KG-Pred. Please
refer to the appendix for detailed definitions.

Experiments
In this section, we present the dataset and models used in
our analysis of AI-generated reports. Given the current lim-
itations in model capabilities, with few models available for
generating CT/MRI reports, our study primarily focuses on
chest X-ray report analysis. However, the proposed ReXKG
is versatile and applicable across various modalities and
anatomical regions, as demonstrated in the appendix.

Datasets
CheXpert Plus: CheXpert Plus (Chambon et al. 2024) is a
dataset that pairs text and images, featuring 223,228 unique
pairs of radiology reports and chest X-rays from 187,711
studies and 64,725 patients. Each patient may be linked to
multiple studies, and each study may include several images.
MIMIC CXR: MIMIC-CXR (Johnson et al. 2019) is a large
publicly available dataset of chest X-rays with free-text ra-
diology reports. The dataset contains 377,110 images corre-
sponding to 227,835 radiographic studies performed at the
Beth Israel Deaconess Medical Center.

Experiments Settings
To ensure a comprehensive analysis, we randomly split stud-
ies from CheXpert Plus into two parts: CheXpert Plus I
(24,086 studies) and CheXpert Plus II (24,085 studies). Ad-
ditionally, we randomly select a subset from MIMIC-CXR
with 24,085 studies for comparison. We designate CheX-
pert Plus I as the benchmark for our study. This subset
serves as the ground truth, upon which all model evaluations
are conducted, inference tasks performed, and knowledge
graphs constructed. Similarly, we can set CheXpert Plus II
as the benchmark, with results provided in the appendix. The
knowledge graphs for comparison can be categorized into
two groups based on the data source.
Intra-Dataset Reports: Intra-Dataset Reports are knowl-
edge graphs built from real clinical datasets across different
studies or centers. We use CheXpert Plus II and the selected
MIMIC-CXR subset, which represent radiologist-written re-
ports from various studies and centers, as benchmark base-
lines for comparison with AI-generated reports.
Extra-Dataset Reports: Extra-Dataset Reports are knowl-
edge graphs constructed from AI-generated reports. To com-
prehensively evaluate AI performance, we assess various

report generation models, including specialist models such
as CvT2DistilGPT2 (Nicolson et al. 2023), RGRG (Tanida
et al. 2023), and Swinv2-MIMIC (Chambon et al. 2024), as
well as generalist models like CheXagent (Chen et al. 2024),
RadFM (Wu et al. 2023), and MedVersa (Zhou et al. 2024).
Here, specialist models are defined as those trained exclu-
sively on chest X-ray report generation, whereas generalist
models are large-scale models trained on various tasks. De-
tails of these models can be found in the appendix.

Implementation Details
For the Information Extraction Schema, we follow the ap-
proach described in (Jain et al. 2021a), utilizing the PURE
framework (Zhong and Chen 2021), which employs a pre-
trained BERT model to obtain contextualized representa-
tions. These representations are then fed into a feedforward
network to predict the probability distribution of entities,
which subsequently serves as input for the relation model.
The learning rate is set to 2e-5 during training. We use Med-
CPT (Jin et al. 2023) as the default medical language model
for entity merging, with a merging threshold of 0.95. The
threshold C for edge construction is set to 5. The number of
nodes in each subgraph is set to k = 2, and the number of
important subgraphs, K, is defined as 10% of the total sub-
graphs in KG-GT. For report generation inference, we use
the code and checkpoints provided by the respective baseline
models, focusing on the generation of the findings section.
All experiments are conducted on an NVIDIA A100 GPU.

Results
In this section, we present a comprehensive analysis of
knowledge graphs generated from both intra-dataset re-
ports (radiologist-written) and extra-dataset reports (AI-
generated). Using CheXpert Plus I as our benchmark, we hy-
pothesize that the knowledge graph generated from CheX-
pert Plus II will display similar nodes, edges, and distribu-
tion characteristics. Such similarity would validate the con-
sistency of our findings and underscore the reliability and
quality of our proposed methods for constructing knowl-
edge graphs. Our analysis is structured around key questions
that probe different aspects of report generation, from entity
coverage to relationship comprehension, providing a multi-
faceted view of current AI models’ capabilities.

Q1: Coverage of Entities
First, we explore the question: How well do the AI-
generated reports cover essential entities such as con-
cepts, anatomy, disorders, devices, and procedures?
As shown in Table A1, We compare the KG-NSC between
CheXpert Plus I with other datasets and various report gen-
eration models. CheXpert Plus II and MIMIC-CXR, repre-
senting radiologist-written reports with similar and differing
distributions of ground truth, exhibit high similarity across
all entity types, with overall scores of 0.970 and 0.928. This
high similarity demonstrates the reliability of the proposed
metric and sets a high benchmark for AI models to match.
Among AI models, generalist models, particularly RadFM
and MedVersa, exhibit broader coverage of essential entities



Type Models KG-NSC KG-AMS KG-SCS
Ana. Dis. Con. Dev. Pro. All Dis.Ana. Dev.Ana. Dis.Dis. All k=2

Intra-Dataset CheXpert Plus II 0.974 0.967 0.970 0.958 0.977 0.970 0.966 0.981 0.988 0.971 0.981
MIMIC-CXR 0.930 0.948 0.930 0.865 0.929 0.928 0.841 0.786 0.858 0.819 0.950

Specialist CvT2DistilGPT2 (Nicolson et al. 2023) 0.781 0.760 0.786 0.730 0.809 0.779 0.776 0.841 0.752 0.624 0.696
RGRG (Tanida et al. 2023) 0.657 0.627 0.624 0.589 0.577 0.626 0.681 0.680 0.642 0.579 0.538
Swinv2-MIMIC (Chambon et al. 2024) 0.772 0.773 0.772 0.742 0.782 0.777 0.719 0.814 0.821 0.646 0.648

Generalist CheXagent (Chen et al. 2024) 0.720 0.698 0.707 0.675 0.716 0.707 0.856 0.883 0.567 0.710 0.588
RadFM (Wu et al. 2023) 0.817 0.829 0.796 0.732 0.777 0.800 0.725 0.695 0.538 0.601 0.733
MedVersa (Zhou et al. 2024) 0.807 0.830 0.801 0.754 0.818 0.804 0.859 0.843 0.894 0.748 0.806

Table 1: Knowledge graph comparison between CheXpert Plus I and Intra-Dataset or Extra-Dataset Reports. KG-NSC, KG-
AMS, and KG-SCS scores are reported. The best results are highlighted in boldface.

compared to specialist models. This superior performance
likely stems from their training on more diverse and large-
scale datasets, enabling these models to generalize better and
capture a wider range of medical entities.

When examining the results for each entity type, there
is a noticeable gap in medical devices across all models.
This discrepancy may be attributed to the primary factor
that models are exclusively trained on the MIMIC-CXR
dataset, thus the models’ predictions align more closely
with MIMIC-CXR’s distribution. However, there are inher-
ent distribution differences between the CheXpert Plus and
MIMIC-CXR datasets. CheXpert Plus includes some rare
devices, such as the “Impella”, which is mentioned only 15
times in the entire CheXpert Plus dataset. Additionally, var-
ied terminology is used to describe the type of devices, such
as “keofeed” for “tubes”.

Q2: Coverage of Relationships Between Entities
Next, we investigate How comprehensive is the coverage
of relationships between entities?
To evaluate the comprehensiveness of AI-generated reports
in capturing relationships between entities, we employed the
KG-AMS and KG-SCS metrics. Table A1 details the corre-
lation between specific types of relationships: disorders with
anatomy, devices with anatomy, and relationships between
disorders. MedVersa leads in the KG-AMS metric across
most categories, particularly excelling in disorder-disorder
and overall relationships. CheXagent, on the other hand,
stands out in device-anatomy relationships, while RadFM
shows balanced performance across various types of en-
tity relationships. Despite these performances, there remains
a significant gap compared to radiologist-written reports,
highlighting areas for further improvement. The KG-SCS
metric (with k=2) offers additional insights into how well
models capture important subgraphs or patterns within the
knowledge graph. MedVersa covers 80.6% of the important
subgraphs, while RadFM covers over 73%, indicating that
while these models perform well, there is still room for en-
hancement in capturing complex relationships.

Q3: Comprehensiveness of Concepts
We further access the quality of content generated by AI
models with the question: How detailed and comprehen-

Figure 3: Average count of concept entities used to modify
disorders and anatomy across different models.

sive are the descriptions of disorders and anatomical re-
gions provided by the AI models?
This question is critical for applying AI models in clinical
scenarios, where the ability to describe and differentiate the
severity of diseases can directly impact diagnosis and treat-
ment planning. To assess the depth and comprehensiveness
with which disorders and anatomical regions are described,
we utilize GPT-4 to classify all concept nodes within our
knowledge graphs. These concepts are categorized into the
following:

• Severity: Describes how intense or severe the symptoms
are, such as mild, moderate, or severe.

• Location: Specifies where on or in the body the disorder
manifests, such as left, right, bilateral, upper, lower, or
specific organs or systems involved.

• Duration: Refers to how long the disorder or its symp-
toms have been present. (acute, chronic, transient)

• Progression: Indicates how the disorder changes over
time, including progressive, stable, and regressive.

• Size: Relevant for physical abnormalities or tumors, in-
dicating how large an affected area or lesion is.



Disorder: opacity Severity Location Size Duration Progression

Figure 4: Detailed results of model predictions for given concepts related to specific disorders. Dark orange indicates the model
predicts the relationship, while light orange indicates not.

• Number: Describes how many lesions or abnormalities
are present, such as single, multiple, or widespread.

Our analysis, depicted in Figure 3, shows that Intra-Dataset
groups exhibit the highest similarity, with nearly identical
counts for all category concepts used to modify disorders
and anatomy. In contrast, AI models tend to underperform,
especially in categories like “severity” and “location”. Mod-
els often describe “location” for anatomy and “severity” for
disorders, such as specifying “left lung” or “mild edema”,
but the range of terms they use for modification is lim-
ited. Moreover, since all models perform inference with-
out considering prior studies, concepts related to progres-
sion such as “unchanged” or “improved” may result from
hallucinations This issue arises partly because the training
data often lack comprehensive, longitudinal information that
accurately captures patient progression. Additionally, some
model training processes do not take into account the pa-
tient history or the continuity of patient data across multiple
studies.

To gain a more detailed understanding, we selected sev-
eral high-frequency disorders and the commonly used con-
cepts to modify these disorders. One example is shown in
Figure 4, the Intra-Dataset Reports’s results exhibit com-
plete coverage. In contrast, models tend to use concepts like
“moderate” and “mild” but do not use terms “severe” or
“subtle” for “opacity”. We provide comprehensive detailed
results in the appendix, from which we can observe that for
some disorders, such as “consolidation”, most models do
not provide severity descriptions. We also provide a barplot
in the appendix showing the frequency of those concepts in
MIMIC-CXR training set, an interesting observation is that
the model’s predictions are not linearly related to the fre-
quency of appearance in the MIMIC-CXR training set. In-
stead, the model tends to overfit a specific synonym within
a set of related concepts, and the selected concept varies for
different disorders.

Q4: Quantified Measurement
We then address the issue of quantification in the reports:
How frequently does the model provide quantified mea-
surements of disorders and anatomical regions?

Figure 5: Detailed results of whether the model predicts spe-
cific size measurements for given disorders. Dark orange in-
dicates the model predicts, while light indicates not.

This information is crucial for the deep analysis of images.
For instance, disorders that consistently include size de-
scriptions like “3mm” in the report might require the de-
velopment of precise segmentation targets. On the other
hand, some disorders that cannot be measured may only
need bounding boxes during labeling. Based on the knowl-
edge graph, AI research can easily identify which disorders
can and should be segmented, thereby further promoting re-
search on grounded report generation.

As shown in Figure 5, we provide an overview of whether
the models give detailed measurement descriptions for the
target disorders. Both CheXpert Part I and CheXpert Part II
consistently provide detailed descriptions for all target disor-
ders, which highlights the real clinical requirements. How-
ever, most AI models show limited coverage, often failing to
provide detailed descriptions for many conditions like calci-
fication and effusion. Relatively speaking, generalist models
like RadFM and MedVersa cover a broader range of disor-
ders. It is notable that CheXagent does not predict any size
measurements for disorders but consistently provides size
descriptions for devices such as tubes and lines. We also pro-
vide the frequency of size descriptions for specific disorders
in MIMIC-CXR training data in the appendix, as shown, the
model’s behavior in providing size descriptions correlates
strongly with the frequency.



Type Models BLEU BERT Semb RadG RadC

Specialist CvT2DistilGPT2 0.123 0.262 0.286 0.119 1.585
RGRG 0.141 0.304 0.257 0.127 1.533
Swinv2-MIMIC 0.129 0.286 0.284 0.123 1.543

Generalist CheXagent 0.102 0.299 0.294 0.124 1.510
RadFM 0.091 0.259 0.202 0.083 1.718
MedVersa 0.116 0.300 0.315 0.127 1.483

Table 2: Comparisons of both specialist and generalist mod-
els on CheXpert Plus. Metrics include BLEU, BERTScore
(BERT), SembScore (Semb), RadGraph F1 (RadG), and
RadCliQ-v1 (RadC).

Q5: Specialist vs. Generalist Models
Finally, we compare different types of AI models by asking:
What are the differences in performance between spe-
cialist models and generalist models?
We summarize the score of different metrics on different
models’ predictions on the training set of CheXpert Plus
finding sections. Note that none of the models were trained
using CheXpert Plus. First, we observe that there is not
a significant gap between the report-vs-report performance
scores of specialist models and generalist models. This sug-
gests that specialist models can perform well on specialist
tasks. However, when comparing the models’ knowledge
coverage with that of radiologists, generalist models like
RadFM and MedVersa show significantly broader node cov-
erage. Note that here, all generalist models are trained on
various tasks such as diagnosis, VQA, and report generation,
but CheXagent only focuses on chest X-rays, while other
generalist models include datasets from various modalities.
From this, we can conclude that including data from various
modalities improves the models’ prediction generalizabil-
ity, especially in terms of entity coverage. To develop med-
ical AI systems that can interpret medical data and reason
through complex problems at an expert radiologist level in
real clinical scenarios, it is important to combine data from
different modalities to broaden the models’ knowledge base.

Ablation Studies
We conduct ablation studies to examine the impact of differ-
ent medical embedding models, similarity thresholds, and
the number of reports on our proposed metrics. The re-
sults are presented in Table 3. First, we compare the perfor-
mance of two medical embedding models, BioLoRD (Remy,
Demuynck, and Demeester 2024) and MedCPT (Jin et al.
2023), at different similarity thresholds. Our findings indi-
cate that the choice of embedding model and threshold has
a minimal effect on the extracted knowledge graph’s qual-
ity. Both models perform robustly across different thresh-
olds, with only slight variations in the KG-AMS metric. We
also investigate how the number of reports influences the
quality of the resulting knowledge graph. As expected, the
number of reports significantly affects the results. However,
we observe that as the number of reports increases, the per-
formance asymptotically approaches that of the full dataset.
For instance, with 10,000 studies, we achieve a KG-NSC of

Model Threshold # Study KG-NSC KG-AMS KG-SCS

BioLoRD 0.95 24,085 1.000 0.989 0.999
BioLoRD 0.90 24,085 1.000 0.957 0.998
MedCPT 0.90 24,085 1.000 0.936 0.991

MedCPT 0.95 100 0.769 0.858 0.585
MedCPT 0.95 1,000 0.923 0.933 0.864
MedCPT 0.95 10,000 0.977 0.987 0.997

Table 3: Ablation studies on medical embedding models,
similarity thresholds, and number of studies.

0.977 and a KG-AMS of 0.987, which closely matches the
performance of the full dataset.

Related Work
Previous evaluations of radiology report generation models
relied mainly on specific report-to-report metrics like Fin-
eRadScore (Huang et al. 2024), RaTEScore (Zhao et al.
2024), RadFact (Bannur et al. 2024), CheXPrompt (Chaves
et al. 2024), and GREEN (Ostmeier et al. 2024). These
metrics, however, do not fully capture an in-depth under-
standing of the capabilities of current models. Our work
aims to address this limitation by leveraging knowledge
graphs constructed from the report corpus. The standard
pipeline for knowledge graph construction typically involves
Named Entity Recognition (Li et al. 2020), Relation Extrac-
tion (Pawar, Palshikar, and Bhattacharyya 2017), and En-
tity Resolution (Christophides et al. 2020). In the medical
domain, the focus has primarily been on developing knowl-
edge graphs based on complex medical systems such as elec-
tronic health records, medical literature, and clinical guide-
lines (Rotmensch et al. 2017; Finlayson, LePendu, and Shah
2014; Bean et al. 2017). However, in the specific context
of radiology reports, most progress focuses on information
extraction (Irvin et al. 2019; McDermott et al. 2020; Peng
et al. 2018; Smit et al. 2020; Jain et al. 2021b,a; Khanna
et al. 2023; Delbrouck et al. 2024), and have not yet led
to the establishment of a comprehensive knowledge graph
specifically tailored for radiology reports. Few existing stud-
ies (Kale et al. 2022; Zhang et al. 2020) related to knowledge
graph construction heavily relied on manual annotation by
radiologists, highlighting the need for more automated, scal-
able approaches in this field.

Conclusion
In this paper, we present ReXKG, a novel system for con-
structing comprehensive radiology knowledge graphs from
medical reports, and introduce three metrics for evaluationg
the similarity of nodes, distributions of edges, and cover-
age of subgraphs. We conduct an in-depth analysis com-
paring AI-generated radiology reports to human-written re-
ports. Our research reveals that generalist models trained on
various modalities offer broader coverage and enhanced ra-
diology knowledge, yet they still fall short of the depth found
in radiologist-written reports, particularly in the descrip-
tion and size measurements of disorders. Additionally, hal-
lucinations related to prior studies are noticeable in model-



generated reports, highlighting the need to incorporate lon-
gitudinal data in future model development.
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V.; Sharma, H.; Meissen, F.; et al. 2024. MAIRA-2:
Grounded Radiology Report Generation. arXiv preprint
arXiv:2406.04449.
Bean, D. M.; Wu, H.; Iqbal, E.; Dzahini, O.; Ibrahim, Z. M.;
Broadbent, M.; Stewart, R.; and Dobson, R. J. 2017. Knowl-
edge graph prediction of unknown adverse drug reactions
and validation in electronic health records. Scientific reports,
7(1): 16416.
Bodenreider, O. 2004. The unified medical language system
(UMLS): integrating biomedical terminology. Nucleic acids
research, 32(suppl 1): D267–D270.
Chambon, P.; Delbrouck, J.-B.; Sounack, T.; Huang, S.-C.;
Chen, Z.; Varma, M.; Truong, S. Q.; Chuong, C. T.; and Lan-
glotz, C. P. 2024. CheXpert Plus: Hundreds of Thousands
of Aligned Radiology Texts, Images and Patients. arXiv
preprint arXiv:2405.19538.
Chaves, J. M. Z.; Huang, S.-C.; Xu, Y.; Xu, H.; Usuyama,
N.; Zhang, S.; Wang, F.; Xie, Y.; Khademi, M.; Yang, Z.;
Awadalla, H. H.; Gong, J.; Hu, H.; Yang, J.; Li, C.; Gao,
J.; Gu, Y.; Wong, C.; Wei, M.-H.; Naumann, T.; Chen, M.;
Lungren, M. P.; Yeung-Levy, S.; Langlotz, C. P.; Wang, S.;
and Poon, H. 2024. Towards a clinically accessible radi-
ology foundation model: open-access and lightweight, with
automated evaluation.
Chen, Z.; Varma, M.; Delbrouck, J.-B.; Paschali, M.;
Blankemeier, L.; Van Veen, D.; Valanarasu, J. M. J.;
Youssef, A.; Cohen, J. P.; Reis, E. P.; et al. 2024. Chexagent:
Towards a foundation model for chest x-ray interpretation.
arXiv preprint arXiv:2401.12208.
Christophides, V.; Efthymiou, V.; Palpanas, T.; Papadakis,
G.; and Stefanidis, K. 2020. An overview of end-to-end
entity resolution for big data. ACM Computing Surveys
(CSUR), 53(6): 1–42.
Delbrouck, J.-B.; Chambon, P.; Chen, Z.; Varma, M.; John-
ston, A.; Blankemeier, L.; Van Veen, D.; Bui, T.; Truong,
S.; and Langlotz, C. 2024. RadGraph-XL: A Large-Scale
Expert-Annotated Dataset for Entity and Relation Extrac-
tion from Radiology Reports. In Findings of the Association
for Computational Linguistics ACL 2024, 12902–12915.
Finlayson, S. G.; LePendu, P.; and Shah, N. H. 2014. Build-
ing the graph of medicine from millions of clinical narra-
tives. Scientific data, 1(1): 1–9.
Huang, A.; Banerjee, O.; Wu, K.; Reis, E. P.; and Rajpurkar,
P. 2024. FineRadScore: A Radiology Report Line-by-Line
Evaluation Technique Generating Corrections with Severity
Scores. arXiv preprint arXiv:2405.20613.

Irvin, J.; Rajpurkar, P.; Ko, M.; Yu, Y.; Ciurea-Ilcus, S.;
Chute, C.; Marklund, H.; Haghgoo, B.; Ball, R.; Shpan-
skaya, K.; et al. 2019. Chexpert: A large chest radiograph
dataset with uncertainty labels and expert comparison. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 33, 590–597.
Jain, S.; Agrawal, A.; Saporta, A.; Truong, S.; Duong, D.
N. D. N.; Bui, T.; Chambon, P.; Zhang, Y.; Lungren, M.;
Ng, A.; Langlotz, C.; Rajpurkar, P.; and Rajpurkar, P. 2021a.
Radgraph: Extracting clinical entities and relations from ra-
diology reports. In Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks, vol-
ume 1.
Jain, S.; Smit, A.; Truong, S. Q.; Nguyen, C. D.; Huynh, M.-
T.; Jain, M.; Young, V. A.; Ng, A. Y.; Lungren, M. P.; and
Rajpurkar, P. 2021b. VisualCheXbert: addressing the dis-
crepancy between radiology report labels and image labels.
In Proceedings of the Conference on Health, Inference, and
Learning, 105–115.
Jin, Q.; Kim, W.; Chen, Q.; Comeau, D. C.; Yeganova, L.;
Wilbur, W. J.; and Lu, Z. 2023. MedCPT: Contrastive Pre-
trained Transformers with large-scale PubMed search logs
for zero-shot biomedical information retrieval. Bioinformat-
ics, 39(11): btad651.
Johnson, A. E.; Pollard, T. J.; Berkowitz, S. J.; Greenbaum,
N. R.; Lungren, M. P.; Deng, C.-y.; Mark, R. G.; and Horng,
S. 2019. MIMIC-CXR, a de-identified publicly available
database of chest radiographs with free-text reports. Scien-
tific data, 6(1): 317.
Kale, K.; Bhattacharyya, P.; Shetty, A.; Gune, M.; Shri-
vastava, K.; Lawyer, R.; and Biswas, S. 2022. Knowl-
edge Graph Construction and Its Application in Automatic
Radiology Report Generation from Radiologist’s Dictation.
arXiv preprint arXiv:2206.06308.
Khanna, S.; Dejl, A.; Yoon, K.; Truong, Q. H.; Duong, H.;
Saenz, A.; and Rajpurkar, P. 2023. RadGraph2: Modeling
Disease Progression in Radiology Reports via Hierarchical
Information Extraction. arXiv preprint arXiv:2308.05046.
Li, J.; Sun, A.; Han, J.; and Li, C. 2020. A survey on deep
learning for named entity recognition. IEEE Transactions
on Knowledge and Data Engineering, 34(1): 50–70.
Liu, C.; Tian, Y.; Chen, W.; Song, Y.; and Zhang, Y. 2024.
Bootstrapping Large Language Models for Radiology Re-
port Generation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, 18635–18643.
Liu, C.; Tian, Y.; and Song, Y. 2023. A systematic review of
deep learning-based research on radiology report generation.
arXiv preprint arXiv:2311.14199.
McDermott, M. B.; Hsu, T. M. H.; Weng, W.-H.; Ghassemi,
M.; and Szolovits, P. 2020. Chexpert++: Approximating the
chexpert labeler for speed, differentiability, and probabilistic
output. In Machine Learning for Healthcare Conference,
913–927. PMLR.
Neumann, M.; King, D.; Beltagy, I.; and Ammar, W. 2019.
ScispaCy: fast and robust models for biomedical natural lan-
guage processing. arXiv preprint arXiv:1902.07669.



Nicolson, A.; et al. 2023. Improving chest X-ray report gen-
eration by leveraging warm starting. Artificial intelligence
in medicine, 144: 102633.

Ostmeier, S.; Xu, J.; Chen, Z.; Varma, M.; Blankemeier, L.;
Bluethgen, C.; Michalson, A. E.; Moseley, M.; Langlotz, C.;
Chaudhari, A. S.; et al. 2024. GREEN: Generative Radiol-
ogy Report Evaluation and Error Notation. arXiv preprint
arXiv:2405.03595.

Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
Bleu: a method for automatic evaluation of machine trans-
lation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, 311–318.

Pawar, S.; Palshikar, G. K.; and Bhattacharyya, P.
2017. Relation extraction: A survey. arXiv preprint
arXiv:1712.05191.

Peng, Y.; Wang, X.; Lu, L.; Bagheri, M.; Summers, R.; and
Lu, Z. 2018. NegBio: a high-performance tool for negation
and uncertainty detection in radiology reports. AMIA Sum-
mits on Translational Science Proceedings, 2018: 188.

Rajpurkar, P.; Chen, E.; Banerjee, O.; and Topol, E. J. 2022.
AI in health and medicine. Nature medicine, 28(1): 31–38.

Rajpurkar, P.; and Lungren, M. P. 2023. The current and
future state of AI interpretation of medical images. New
England Journal of Medicine, 388(21): 1981–1990.

Reale-Nosei, G.; et al. 2024. From vision to text: A com-
prehensive review of natural image captioning in medical
diagnosis and radiology report generation. Medical Image
Analysis, 103264.

Remy, F.; Demuynck, K.; and Demeester, T. 2024.
BioLORD-2023: semantic textual representations fusing
large language models and clinical knowledge graph in-
sights. Journal of the American Medical Informatics As-
sociation, ocae029.

Ridnik, T.; Ben-Baruch, E.; Noy, A.; and Zelnik-Manor,
L. 2021. Imagenet-21k pretraining for the masses. arXiv
preprint arXiv:2104.10972.

Rotmensch, M.; Halpern, Y.; Tlimat, A.; Horng, S.; and Son-
tag, D. 2017. Learning a health knowledge graph from elec-
tronic medical records. Scientific reports, 7(1): 5994.

Sanh, V.; Debut, L.; Chaumond, J.; and Wolf, T. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter. In NeurIPS EMC2 Workshop.

Smit, A.; Jain, S.; Rajpurkar, P.; Pareek, A.; Ng, A. Y.; and
Lungren, M. P. 2020. CheXbert: combining automatic la-
belers and expert annotations for accurate radiology report
labeling using BERT. arXiv preprint arXiv:2004.09167.

Tanida, T.; Müller, P.; Kaissis, G.; and Rueckert, D. 2023.
Interactive and explainable region-guided radiology report
generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 7433–7442.

Wu, C.; Zhang, X.; Zhang, Y.; Wang, Y.; and Xie, W. 2023.
Towards Generalist Foundation Model for Radiology by
Leveraging Web-scale 2D&3D Medical Data. arXiv preprint
arXiv:2308.02463.

Wu, H.; Xiao, B.; Codella, N.; Liu, M.; Dai, X.; Yuan, L.;
and Zhang, L. 2021a. Cvt: Introducing convolutions to vi-
sion transformers. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, 22–31.
Wu, J. T.; Agu, N. N.; Lourentzou, I.; Sharma, A.; Paguio,
J. A.; Yao, J. S.; Dee, E. C.; Mitchell, W.; Kashyap, S.; Gio-
vannini, A.; et al. 2021b. Chest imagenome dataset for clin-
ical reasoning. arXiv preprint arXiv:2108.00316.
Yu, F.; Endo, M.; Krishnan, R.; Pan, I.; Tsai, A.; Reis, E. P.;
Fonseca, E. K. U. N.; Lee, H. M. H.; Abad, Z. S. H.; Ng,
A. Y.; et al. 2023. Evaluating progress in automatic chest
x-ray radiology report generation. Patterns, 4(9).
Zhang, T.; Kishore, V.; Wu, F.; Weinberger, K. Q.; and Artzi,
Y. 2019. Bertscore: Evaluating text generation with bert.
arXiv preprint arXiv:1904.09675.
Zhang, Y.; Wang, X.; Xu, Z.; Yu, Q.; Yuille, A.; and Xu, D.
2020. When radiology report generation meets knowledge
graph. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, 12910–12917.
Zhao, W.; Wu, C.; Zhang, X.; Zhang, Y.; Wang, Y.; and Xie,
W. 2024. RaTEScore: A Metric for Radiology Report Gen-
eration. medRxiv, 2024–06.
Zhong, Z.; and Chen, D. 2021. A frustratingly easy approach
for entity and relation extraction. In Proceedings of the 2021
Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Tech-
nologies, 50–61.
Zhou, H.-Y.; Adithan, S.; Acosta, J. N.; Topol, E. J.;
and Rajpurkar, P. 2024. A Generalist Learner for Mul-
tifaceted Medical Image Interpretation. arXiv preprint
arXiv:2405.07988.



Appendix
Prompt for Entity Extraction

You are a radiologist performing clinical term ex-
traction from the FINDINGS and IMPRESSION
sections in the radiology report. Here a clinical term
can be in [anatomy, disorder present,
disorder notpresent, procedure,
device present, device notpresent,
size, concept]. anatomy refers to the anatom-
ical body. disorder present refers to findings
or diseases that are present according to the sen-
tence. disorder notpresent refers to findings
or diseases that are not present according to the
sentence. procedure refers to procedures used
to diagnose, measure, monitor, or treat problems.
device present refers to any instrument, appa-
ratus for medical purpose that are present according
to the sentence. device notpresent refers to any
instrument, apparatus for medical purpose that are not
present according to the sentence. size refers to the
measurement of disorders or anatomy, for example,
3mm, 4x5 cm. concept refers to descriptors such as
acute or chronic, large, size or severity, or other
modifiers, or descriptors of anatomy being normal.
For example, right pleural effusion, right should
be a concept, and pleural should be anatomy
and effusion should be disorder-present or
disorder-notpresent. For example, normal car-
diomediastinal silhouette. normal and silhouette
should be concept, cardiomediastinal should
be anatomy. Please extract terms one word at a time
whenever possible, avoiding phrases. Note that terms
like no and no evidence of are not considered
entities. Given a list of radiology sentence input in the
format: <Input><sentence><sentence></Input>
Please reply with the JSON format follow-
ing template: {<sentence> {entity:entity
type, entity:entity type},
<sentence> {entity:entity type,
entity:entity type}}.

Prompt for Relation Extraction

You are a radiologist performing relation extraction
of entities from the FINDINGS and IMPRESSION
sections in the radiology report. Here a clinical term
can be in [anatomy, disorder present,
disorder notpresent, procedures,
procedures, concept, devices present,
devices notpresent]. And the relation can be
in [modify, located at, suggestive of].
suggestive of means the source entity (findings)
may suggest the target entity (disease). located at
means the source entity is located at the target entity.
modify denotes the source entity modifies the target
entity. Every time there is a modify relationship

between concept and anatomy, the direction should be
concept → anatomy. For example, paranasal sinuses
are clear: source entity clear (concept), modify
target entity paranasal sinuses (anatomy). For
example, acute hemorrhage: source entity acute
(concept), modify target entity hemorrhage.
Given a piece of radiology text input in the JSON
format: {sentence:{entity:entity type},
sentence:{entity:entity type}}.
Please reply with the following JSON format:
{sentence:[{source entity:target entity,
relation:relation}, {source entity:target
entity, relation:relation}}

Algorithm for Node Construction

Algorithm 1: Node Integration

Require: E: list of entities
Require: C: count threshold
Require: n: maximum number of words in an entity

1: Initialize A← ∅ {Set of initial nodes}
2: Group E by word count and filter by C
3: for each k from 1 to n do
4: for each e ∈ E with k words do
5: if k == 1 then
6: Add e to set A
7: else
8: if e can merge from nodes in A then
9: Pass

10: else
11: Add e to set A
12: end if
13: end if
14: end for
15: end for
16: return A {Set of nodes}

KG Subgraph Coverage Score
Let S = {S1, S2, ..., SL} be the set of all connected sub-
graphs in KG-GT with the size of k nodes. For each sub-
graph Si, we compute an importance score I(Si) based on
the frequency of occurrence and total edge weights:

I(Si) =
∑

v∈V (Si)

wv ·
∑

e∈E(Si)

we, (4)

where V (Si) and E(Si) denote the vertex and edge sets of
Si respectively, and wv and we are the corresponding node
and edge weights. For each subgraph Si in KG-GT, we com-
pute a presence score P (Si) in KG-Pred:

P (Si) =
1

2

(
|E(S′

i)|
|E(Si)|

+

∑
v∈V (Si)

sv

|V (Si)|

)
, (5)

where S′
i is the corresponding subgraph in KG-Pred, |E(.)|

and |V (.)| denote the number of edges and vertices respec-
tively, and sv is the similarity score between matched nodes



Dataset Source Target KG-NSC KG-AMS KG-SCS
Ana. Dis. Con. Dev. Pro. All Dis.Ana. Dev.Ana. Dis.Dis. All k=2

CT-RATE Part I Part II 0.977 0.971 0.984 0.955 0.973 0.978 0.997 0.914 0.972 0.974 0.999
CT-RATE Part II Part I 0.982 0.968 0.977 0.977 0.991 0.977 0.997 0.974 0.993 0.948 0.998

MIMIC-IV Head CT Part I Part II 0.986 0.976 0.986 0.976 0.987 0.984 0.989 0.986 0.994 0.993 0.999
MIMIC-IV Head CT Part II Part I 0.981 0.977 0.983 0.952 0.972 0.980 0.994 0.987 0.996 0.987 0.999

Table A1: Knowledge graph comparison on CT-RATE and MIMIC-IC Head CT datasets. KG-NSC, KG-AMS, and KG-SCS
scores are reported. The best results are highlighted in boldface.

Type Models KG-NSC KG-AMS KG-SCS
Ana. Dis. Con. Dev. Pro. All Dis.Ana. Dev.Ana. Dis.Dis. All k=2

Intra-Dataset CheXpert Plus I 0.970 0.967 0.974 0.980 0.980 0.973 0.954 0.983 0.985 0.968 0.997
MIMIC-CXR 0.920 0.956 0.936 0.882 0.938 0.932 0.844 0.807 0.849 0.832 0.952

Specialist CvT2DistilGPT2 (Nicolson et al. 2023) 0.776 0.772 0.787 0.747 0.806 0.781 0.751 0.846 0.692 0.644 0.664
RGRG (Tanida et al. 2023) 0.664 0.636 0.618 0.597 0.568 0.626 0.612 0.681 0.725 0.578 0.529
Swinv2-MIMIC (Chambon et al. 2024) 0.790 0.792 0.774 0.732 0.812 0.780 0.690 0.811 0.719 0.660 0.625

Generalist CheXagent (Chen et al. 2024) 0.715 0.696 0.698 0.686 0.718 0.702 0.779 0.877 0.566 0.711 0.555
RadFM (Wu et al. 2023) 0.804 0.831 0.788 0.728 0.765 0.792 0.681 0.704 0.613 0.615 0.635
MedVersa (Zhou et al. 2024) 0.804 0.824 0.800 0.750 0.813 0.802 0.800 0.851 0.893 0.723 0.709

Table A2: Knowledge graph comparison between CheXpert Plus II and Intra-Dataset or Extra-Dataset Reports. KG-NSC, KG-
AMS, and KG-SCS scores are reported. The best results are highlighted in boldface.

as defined in the KG-NSC section. The Subgraph Coverage
Score is then calculated as:

KG-SCS =

∑K
i=1 I(Si) · P (Si)∑K

i=1 I(Si)
, (6)

where K is the number of top important subgraphs consid-
ered, I(Si) is the normalized importance score of subgraph
Si among the selected K subgraphs.

Report Genertaion Models
• CvT2DistilGPT2 (Nicolson et al. 2023): The model

adopts the Convolutional Vision Transformer (CvT) (Wu
et al. 2021a) pre-trained on ImageNet-21K (Ridnik et al.
2021) for the visual encoder and the Distilled Genera-
tive Pre-trained Transformer 2 (DistilGPT2) (Sanh et al.
2019) for the text decoder. We use the released check-
point trained on the MIMIC-CXR dataset.

• RGRG(Tanida et al. 2023): The model employs an
anatomy-based object detector, fine-tuned on the Chest
ImaGenome dataset (Wu et al. 2021b), which identifies
29 annotated anatomical regions. These regional visual
features are then used to guide the generation of detailed
and clinically relevant radiology reports

• Swinv2-MIMIC(Chambon et al. 2024): The model is
proposed as a baseline model for report generation on the
CheXpert Plus dataset (Chambon et al. 2024). It builds
upon the Swin Transformer architecture, and for our ex-
periments, we use the released checkpoint trained on the
MIMIC-CXR findings dataset.

• CheXagent(Chen et al. 2024): The model is trained on
the CheXinstruct dataset, which utilizes a clinical large

language model for parsing radiology reports, a vision
encoder for CXR representation, and a network that
bridges vision and language modalities.

• RadFM(Wu et al. 2023): The model is a radiology foun-
dation model trained on large-scale multi-modal medical
datasets, which enables the integration of text input in-
terleaved with 2D or 3D medical scans to generate re-
sponses for diverse radiologic tasks.

• MedVersa(Zhou et al. 2024): The model is a versatile
model trained on large-scale medical data across multiple
modalities and tasks, which supports multimodal inputs,
outputs, and on-the-fly task specification.

Evaluation Metrics
• BLEU (Papineni et al. 2002) evaluates the precision of

generated text by comparing n-gram overlap between the
generated report and reference reports.

• BERTScore (Zhang et al. 2019) employs a pre-trained
BERT model to compute the similarity of word embed-
dings between candidate and reference texts.

• SembScore (Smit et al. 2020) refers to the CheXbert
labeler vector similarity. This method uses a 14-
dimensional vector to indicate the presence of 13 com-
mon symptoms and the “no finding” observation for each
report, then calculates the cosine similarity between these
vectors.

• RadGraph F1 (Jain et al. 2021a) extracts radiology en-
tities and relations specifically for Chest X-ray modality
and computes the F1 score at the entity level.



Figure A1: Frequency of concepts used to modify different disorders in the training set MIMIC-CXR.

• RadCliQ-v1 (Yu et al. 2023) is a composite metric that
incorporates BLEU, BERTScore, SembScore, and Rad-
Graph F1.

Demonstration of ReXKG on various modalities
The proposed knowledge graph construction system is ver-
satile and can be applied across various modalities and
anatomical regions. We further demonstrate its effectiveness
on CT-RATE and MIMIC-IV Head CT reports, similar to
the chest x-ray experiments. For these studies, we randomly
split the target dataset into two equal parts and compared the
knowledge graphs constructed from each subset.
• CT-RATE: CT-RATE consists of 25,692 non-contrast

chest CT volumes, expanded to 50,188 through various
reconstructions, from 21,304 unique patients, along with
corresponding radiology text reports. Here, we split the
studies into two parts, Part I and Part II.

• MIMIC-IV Head CT: MIMIC-IV notes include reports
from various modalities. Here we select the reports from
head CT, including 101,633 studies, and split them into
two parts, Part I and Part II.

The results in Table A1 show that when two corpora used
for knowledge graph construction are of similar quality, the
scores are consistently high. This indicates that the met-
rics are robust and suitable for evaluating knowledge graphs
across various modalities.

Results with CheXpert Plus II as benchmark
Here, we set CheXpert Plus II as the benchmark and repro-
duce all the experiments, with results provided in Table A2.
As shown, the experimental results are consistent with those
presented in the results section using CheXpert Plus I as the
benchmark.

Analysis of the concept used to modify disorders
Figure A1 illustrates the frequency distribution of the ana-
lyzed concepts in the MIMIC-CXR training set. Figure A2
depicts the frequency of size descriptions for specific dis-
orders in the MIMIC-CXR training data. Figure A3 and
Figure A4 provide comprehensive results on high-frequency

Figure A2: Frequency of size measurement for different dis-
orders in the training set MIMIC-CXR.

disorders and the commonly used concepts to modify these
disorders across different models.



Disorder: effusion Severity Location Size Duration Progression

Disorder: edema Severity Location Size Duration Progression

Disorder: consolidation Severity Location Size Duration Progression

Disorder: pneumothorax Severity Location Size Duration Progression

Figure A3: Detailed results of model predictions.



Disorder: atelectasis Severity Location Size Duration Progression

Disorder: fracture Severity Location Size Duration Progression

Disorder: pneumonia Severity Location Size Duration Progression

Disorder: nodule Severity Location Size Duration Progression

Figure A4: Detailed results of model predictions.
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