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Clinical decision support (CDS) tools that leverage machine 
learning techniques are becoming more common. They have 
been used to facilitate early recognition of disease states, 

reduce diagnostic errors and improve patient outcomes1–4. Of par-
ticular interest are tools that can identify at-risk patients early in 
the progression of a disease, allowing providers to intervene ear-
lier and potentially improve outcomes. While traditional CDS 
tools use a small number of criteria to assess patient risk, tools 
informed by machine learning techniques use large amounts of 
high-dimensional historical data to learn patterns indicative of the 
disease of interest1,5. They can also incorporate individual-specific 
features (such as comorbid conditions and patient history) in the 
algorithm. In retrospective evaluations, these systems are generally 
more precise and identify patients earlier in their disease trajec-
tory6–10. Improved identification of disease, however, contributes 
little if the tool is not adopted and used by providers11–15, making 
user adoption key to improving patient outcomes. Studies to date 

have shown limited success gaining widespread adoption16–22, with 
users typically responding to only 6–45% of alerts or requiring dedi-
cated staff to review alerts and having low to moderate impact on 
provider practice23–26; however, as these evaluations typically com-
bine the questions of adoption and clinical impact, it is challenging 
to distinguish the extent to which each contributes to the limited 
impact on provider practice. Moreover, there is limited evidence on 
how best to design and integrate such tools to improve adoption and 
increase impact on clinical practice.

Adoption of automated systems in non-clinical settings depends 
on several factors, including personal characteristics and prefer-
ences of the user, characteristics of the automated system (such as a 
CDS tool) and the environment in which the technology is used27. 
In clinical simulations in a ‘laboratory’ setting, where providers are 
shown simulated CDS recommendations for exemplar patients, 
studies have found that interface design28, provider expertise29 and 
clinical time constraints30 all play a role in adoption of the tool;  
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however, in the real-world clinical setting, there are additional 
barriers to system adoption, including unpredictable variations in 
workflow, changes in personnel and high-stakes consequences of 
incorrect decisions that are difficult to replicate in simulations31. In 
this study, we sought to identify which patient, provider and envi-
ronmental factors were associated with adoption of a CDS tool in 
the real-world setting and could be modified to increase adoption 
of these systems.

In this study, we examined the predictive performance and 
clinical adoption of a deployed CDS tool for early recognition 
of sepsis called the Targeted Real-time Early Warning System 
(TREWS). Early recognition of sepsis is critical for successful 
treatment and, in particular, early administration of antibiotics is 
associated with decreased mortality32–34. Using electronic health 
record (EHR) data collected following the initial deployment of 
TREWS, we measured adoption of TREWS based on the degree 
to which providers reviewed and confirmed alerts within the EHR 
system. Using these data we analyzed the extent to which those 
actions were associated with changes in the timing of antibiotic 
ordering, as well as various patient, provider and environmental 
factors. As analyzing the impact of the tool on patient outcomes 
requires a separate study design, we have prepared a companion 
manuscript to address this question35. While the current manu-
script analyzes the association between provider response to the 
alert and the timing of antibiotic orders, the companion manu-
script examines the association between provider response to the 
alert and patient outcomes35.

Results
Retrospective performance characterization of TREWS. To pro-
vide context, we first characterized how well TREWS identified 
EHR-confirmed sepsis in a retrospective, pre-deployment cohort 
composed of patients admitted to one academic and two community 
hospitals in the Maryland/Washington DC area between January 
2016 and March 2018. Of 173,931 patient encounters included in 
the retrospective cohort, 3,858 sepsis cases were retrospectively 
identified using EHR-based sepsis phenotyping, which, consis-
tent with the third sepsis consensus definition of sepsis, identifies 
sepsis cases based on the co-occurrence of suspicion of infection 
and related organ dysfunction, while also accounting for common 
sources of confounding (Online Methods provides the details)36–38. 
In the retrospective cohort, the model identified sepsis with an area 
under the curve (AUC) of 0.97. At a sensitivity of 0.8, the model had 
a positive predictive value (PPV) of 0.27 and 7% of patient encoun-
ters met alert criteria. The complete receiver operating characteris-
tic and sensitivity–PPV curves are shown in Extended Data Fig. 1.  
Patients with sepsis not immediately recognized upon admission 
were identified a median 3.6 h before first antibiotic order and 5.7 h 
before first antibiotic order among patients with sepsis who died 
in hospital (Extended Data Table 1). The timing of the alert rela-
tive to the patient’s first antibiotic order is further summarized in 
Extended Data Table 1.

Description of the deployed TREWS alert system. Beginning 
in 2018, TREWS was deployed to several hospitals in the Johns 
Hopkins Health System. When a TREWS alert occurred on a 
patient, the alert was passively displayed in the EHR as a clickable 
icon on the emergency department (ED) track board or the patient 
list. The bedside provider (physician or advanced practice provider) 
then had the option to open the alert and view the tool’s analysis, 
which included current indicators of organ dysfunction and a list 
of factors considered by the model (Methods provides additional 
details about the model, deployment and interface). The bedside 
provider could then choose to enter an evaluation via the TREWS 
interface indicating whether or not they believed the patient had 
sepsis at that time (Methods provides further details).

Definition of adoption. A primary goal of TREWS is to trigger 
providers to open the page and review the alert (referred to here 
as an evaluation) and to enter in the page whether the patient had 
sepsis (referred to here as confirmation or dismissal) to prompt 
earlier consideration of treatment for patients deemed to be sep-
tic. Our primary measure of adoption, therefore, was whether or 
not the provider (either a physician or advanced practice provider) 
entered a patient evaluation (either confirmed as having sepsis or 
dismissed as not having sepsis) within the tool following the alert. 
We considered an evaluation ‘timely’ if it was entered within 3 h 
after the alert appeared in the EHR. The 3-h window was chosen 
to match the treatment window recommended by the Centers for 
Medicare and Medicaid Services (CMS) sepsis core measure (SEP-
1) and the Surviving Sepsis Campaign guidelines38–40. As providers 
were not required to respond to alerts within the TREWS interface, 
this definition may not capture all patient evaluations resulting 
from the TREWS alerts. For example, a provider may see the alert 
in the EHR and choose to document and initiate sepsis treatment 
without documenting it in the tool interface; however, as the major-
ity of alerts had an evaluation entered during our study (see ‘study 
question 1’ below), we consider this to be a strong proxy measure. 
We used the percent of alerts evaluated and the percent confirmed 
as our primary measures of system adoption throughout.

Study question 1: study population and overall adoption. During 
the post-deployment study period, the TREWS system screened 
469,419 patient encounters (Fig. 1). Screened encounters included 
all patients who presented to the ED as well as those who were 
admitted to an observation or inpatient unit. Overall, the system 
flagged 31,591 (6.7%) patient encounters for sepsis screening; aver-
age daily alert counts for each hospital are shown in Extended Data 
Table 2. Among screened patients, 9,805 (2.1%) were retrospectively 
identified as having sepsis using EHR-based sepsis phenotyping 
(Fig. 1)36,37. Of the patient encounters with sepsis, 8,033 (82%) were 
flagged by the tool. The sample characteristics for these encounters 
are reported in Extended Data Table 3.

To assess the extent to which clinicians adopted the alert, we 
measured the percentage of patients with an alert who had an evalu-
ation entered within the TREWS page. Among all patient encoun-
ters with an alert, 28,243 (89%) had a provider evaluation entered 
in the TREWS page, with 16,768 (53%) and 22,982 (73%) receiving 
evaluation within 1 h and 3 h, respectively (Table 1). A total of 1,965 
unique providers entered at least one evaluation in TREWS dur-
ing the study period. Alerts on patients with EHR-confirmed sep-
sis were evaluated at similar rates to the general population. Of the 
patients who had their alert evaluated, 10,644 (38%) had their alert 
confirmed (the provider recorded that the patient had sepsis at the 
time of evaluation) (Table 1). Among patients who had their alert 
evaluated and were retrospectively identified as having sepsis, 5,388 
(71%) had their alert confirmed (Table 1). The rate of confirmation 
among alerts on sepsis patients was similar across all time windows 
considered.

Study question 2: timing of antibiotics relative to alerts. To assess 
the association between tool adoption and patient care, we exam-
ined the extent to which recording an evaluation for sepsis within 
3 h after the alert was associated with the timing of a patient’s first 
antibiotic order, a key element of sepsis treatment33,34,41. All results 
were adjusted for patient demographics, medical history, labora-
tory measurements, vital signs, comorbidities and admitting hos-
pital (Methods). A total of 3,775 patients had an alert, had sepsis 
and had antibiotics first ordered and administered in the 24 h fol-
lowing their alert and were thus included in our primary analysis  
(Fig. 1). Compared to patients for whom a timely evaluation was 
not entered, patients with a timely evaluation entered had a 1.12-h 
(95% CI 0.87−1.30) lower adjusted median time from alert to first  
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antibiotic order (Table 2). Further, patients whose alert was con-
firmed (not just evaluated) within 3 h had a 1.85-h (95% CI 1.66–
2.00) lower adjusted median time from alert to antibiotic order 
compared to patients who either did not have a timely evaluation or 
had their alert dismissed (Table 2).

Study question 3.1: factors associated with alert adoption. To 
further understand alert adoption, we examined which patient, 
provider and environmental factors were associated with timely 
alert evaluation among patients with sepsis. A complete list of fac-
tors considered is provided in Table 3. For each of these factors, we 
estimated the association between that factor and whether the alert 
was evaluated within 3 h, adjusting for all other considered factors. 
Among the 3,775 patients who met the criteria for our primary 
analysis, 3,035 had an evaluation entered within 3 h and 740 did not. 
Among patient factors (Table 3), only advanced age (>70 years) was 
significantly associated with an increased likelihood of entering a 
timely evaluation (Table 4). Among environmental factors (Table 
3), alerts occurring between 7:00 and 15:00 were associated with 
increased likelihood of timely evaluation. Alerts between 15:00 and 
23:00 and 23:00 and 3:00 and high admission volumes were not 
significantly associated with timely evaluation. A high number of 
alerts in the previous 24 h (‘alert volume’) significantly decreased 
the likelihood of timely evaluation. Provider factors (Table 3) had 

the strongest associations with timely evaluation, with ED provid-
ers and providers with a recent interaction with the alert having 
the highest likelihood of entering a timely evaluation with adjusted 
risk ratios of 1.22 (95% CI 1.14–1.32) and 1.22 (95% CI 1.19–1.26), 
respectively.

Study question 3.2: Factors associated with alert dismissal. Even 
when a provider responds to an alert, sepsis may not be immedi-
ately recognized or providers may prefer to manage sepsis without 
assistance from the system. We defined alert dismissal as occur-
ring when a provider entered the TREWS page and entered an 
evaluation indicating that the patient did not currently have sep-
sis. Restricting our population to retrospectively identified patients 
with sepsis who received a substantial antibiotic course (4+ contin-
uous days of an antibiotic or antibiotics until death or transfer to an 
acute care facility), indicating suspicion of infection, we examined 
which patient, provider and environmental factors were associated 
with alert dismissal on patients with sepsis (Table 3). Among the 
alerts on included patients with EHR-confirmed sepsis (n = 7,621), 
2,463 received a timely evaluation and met the additional 4+ anti-
biotic day restriction (1,751 confirmed alerts and 712 dismissed 
alerts). Among patient factors, the absence of key sepsis symptoms 
and younger age were significantly associated with an increase in 
the likelihood of dismissing evaluated alerts (Table 5). High acute 
general severity (Table 3) was also associated with an increase in the 
likelihood of dismissing the alert. Other patient factors were not sig-
nificantly associated with alert dismissal. Among provider factors, 
working in the ED and recent interactions with alerts were both 
associated with decreased likelihood of dismissal and, among envi-
ronmental factors, alerts occurring during the evening or overnight 
shifts (15:00–23:00 or 23:00–7:00) were more likely to be dismissed.

Discussion
In this study, we characterized the adoption and clinical impact of 
TREWS, a machine learning-based CDS system for recognizing and 
treating sepsis early in its progression, and evaluated the extent to 
which patient presentation, environmental and provider-related 
factors were associated with provider response to the alert. Based 
on a retrospective evaluation, TREWS achieved an AUC of 0.97 
and alerts triggered an average of 3.6 h before antibiotic ordering 
for sepsis patients not immediately recognized and treated upon 
admission. Throughout the prospective deployment, TREWS was 
adopted at a high rate, with providers entering evaluations for 89% 
of alerts (73% of alerts within 3 h) and with 37–38% of those patients 
confirmed by the provider as having sepsis. Note that the deployed 
alert had a higher confirmation rate than might be expected based 
on the retrospective PPV (27%). This may reflect tuning of the alert 
threshold that occurred during the deployment process, as well as 
providers using the alert interface to document suspected rather 
than confirmed sepsis. In a separate analysis, we found that the sen-
sitivity and PPV of the deployed alert was similar between sex and 
racial groups, but the rate of alert confirmation by providers dif-
fered across racial groups42.

Timely confirmation of alerts was associated with a shorter 
time from alert to first antibiotic order among patients with sepsis 
(−1.85 h; 95% CI −2.00 to −1.66). The observed reduction in time to 
antibiotics suggests that use of TREWS as intended can lead to faster 
treatment among patients with sepsis33,34,43. In a companion paper, 
we examined the association between provider response to TREWS 
and patient outcomes35. Analysis of the associations between patient 
presentation, alert environment and provider characteristics and 
real-time provider response to alerts, showed that provider charac-
teristics had the strongest association with the decision to evaluate 
the alert; however, among alerts with a timely evaluation, certain 
patient, provider and environmental factors were significantly asso-
ciated with a provider’s confirmation of the alert.

Patient encounters screened by TREWS
(469,419 total, 9,805 with sepsis*)

Patient encounters 
flagged by TREWS
(31,591 total, 8,033 

with sepsis*)

Sepsis* encounters 
not flagged by TREWS

(1,772 encounters)

Flagged in ED or inpatient
(29,768 total, 7,621 with sepsis)

Sepsis* encounters without antibiotics 
ordered before alert

(4,448)

Antibiotics administered within
24 h after the alert

(3,775)

Evaluation entered within 3 h
(3,035)

4+ qualifying antibiotic days
(2,463)

Study questions 2
and 3.1

Study question 3.2

Study question 1

* Sepsis identified retrospectively based on case review

Fig. 1 | Included study population by study question. The waterfall diagram 
shows the included population for each study question. Study question 1 
included 469,419 screened patients. This included all patients presenting 
to the ED or admitted to an observation or inpatient unit. Study questions 
2 and 3.1 included 3,775 patients with sepsis who received an alert and 
who had no antibiotic orders before the alert, but who received antibiotics 
within 24 h after the alert. Study question 3.2 included the 2,463 of these 
patients who had an evaluation of their alert entered by a provider within 
3 h of the alert and who also received antibiotic treatment over the course 
of 4 d or more.
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In sepsis, based on promising retrospective validation, a grow-
ing number of tools have been deployed to clinical settings21,44–49. 
A subset of these have shown impact on treatment processes44,46,47 
but all relied on dedicated staff to manage the high alert volumes 
and false alarm rates. General deterioration alerts such as the system 
described by Escobar et al. have also shown promise for influenc-
ing care; however, the system described by Escobar et al. is not spe-
cific to sepsis and requires a centralized deployment strategy using 
dedicated staff26. Employing dedicated staff can ensure adoption, 
but poses challenges for scaling CDS to monitoring multiple condi-
tions and may not be possible at sites with fewer resources. Instead, 
deploying reliable CDS with low alert volumes that are designed to 
integrate into the clinical workflow and encourage adoption can 
enable bedside implementation that improves responsiveness and 
alert value, while both reducing alert burden and the cost of addi-
tional staff30,50,51; however, this introduces the question of whether 
clinicians would in fact use and adopt such a system and what fac-
tors may impact that use.

The high overall rate of provider response to the TREWS alert 
observed in this study (a provider entered an evaluation in response 
to 89% of alerts) is promising given the documented challenges to 
gaining adoption of such systems21,22,52–55. It demonstrates that a 
bedside alert system can be used to disseminate clinical alerts and 
still attain high rates of adoption. As alert burden and the perceived 
accuracy of a CDS tool both play major roles in tool adoption and 
trust16,17,31; one reason for the high observed adoption of TREWS 
may be the high predictive performance and low alert burden of 
TREWS relative to comparable deployed systems. Even with a 
sensitivity of 82%, precision was high with one in three evaluated 
alerts confirmed by a provider to be sepsis. Past deployed systems 
have reported significantly lower predictive performance on simi-
lar hospital populations21,48,55. For example, one of the most widely 
deployed sepsis early warning systems had a sensitivity of only 
33% and a precision of 2.4% (1 in 46 alerts within 24 h of sepsis 
onset)48. Additionally, ease of use and integration into the workflow 
have been noted as important factors influencing adoption28,30,56,57. 

Availability of TREWS within a provider’s EHR workflow and the 
inclusion of alert context to avoid ‘black box’ presentation may also 
have improved overall adoption of the tool.

Provider characteristics had the strongest association with the 
likelihood of evaluating a TREWS alert. While to a lesser extent, 
environmental factors such as time of day were also associated with 
the likelihood of evaluation, we did not find associations between 
patient presentation variables and alert evaluation. Providers who 
work in the ED or who had previously interacted with the tool and 
entered an evaluation, were most likely to evaluate a new alert. 
There are several possible reasons for these results. Some pro-
viders may be more willing to adopt new CDS tools than others; 
this tendency is sometimes referred to as ‘dispositional trust’58,59. 
Additionally, increased familiarity with the system may add to its 
perceived ease of use or accuracy. As most first alerts occurred in 
the ED, those providers may naturally get more exposure to TREWS 
and be more familiar with the system. This is an example of learned 
trust59. Alternatively, the higher patient load and greater degree of 
uncertainty around patients in the ED may increase provider will-
ingness to utilize the alert, which is an example of situational trust59. 
Creating opportunities to interact with and practice using TREWS 
in a simulated setting or adapting the alert policy and interface 
design for different types of providers could help increase familiar-
ity and increase adoption.

The lack of an association between most patient factors and the 
likelihood of a provider entering a timely evaluation could also be 
viewed as promising (Table 4). It suggests that providers are will-
ing to engage with the system even in cases that do not display an 
obvious presentation of sepsis; however, patient presentation was 
associated with alert dismissal in patients with sepsis. We found that 
alerts occurring on patients with sepsis who did not have specific 
key sepsis symptoms or with higher acute complexity at the time 
of the alert, were more likely to have their alert dismissed. It makes 
sense that alerts are more likely to be confirmed when there is clear 
support for the diagnosis and a lack of alternate explanation; how-
ever, this may pose a problem in cases where patients have less typi-
cal presentations of sepsis or where the alert occurs in advance of 
those symptoms developing. Further, if TREWS is perceived as less 
accurate in cases with high general acute severity, adoption may be 
lower in these cases as well. Education to increase awareness about 
alternative presentations of sepsis, or situations where patient com-
plexity may mask developing sepsis symptoms, may help improve 
provider trust that the alerts are delivering valuable information.

Among environmental factors, alert dismissal (evaluating the 
alert and indicating that the patient did not have sepsis) on patients 
retrospectively identified as having sepsis was most strongly associ-
ated with time of day, with alerts occurring during the time ranges 
of 15:00–23:00 or 23:00–7:00 more likely to be evaluated and dis-
missed, even after accounting for patient presentation (Table 5). 
This may reflect an association between time of day and unit vol-
ume. Greater workload during the later shifts could contribute to 

Table 1 | Provider interaction with the TREWS interface following an alert

Alerts with provider evaluation entered (n = 31,591) Alerts on sepsis cases* (n = 8,033)

Time from alert to 
response

All alerts (% of alerts) Confirmed alerts (% of 
evaluated alerts)

All alerts (% of alerts on 
sepsis cases)

Confirmed alerts (% of evaluated 
alerts on sepsis cases)

Within 1 h 16,768 (53%) 6,184 (37%) 4,343 (54%) 3,162 (73%)

Within 3 h 22,982 (73%) 8,587 (37%) 5,943 (74%) 4,311 (73%)

Within 6 h 25,020 (79%) 9,337 (37%) 6,485 (81%) 4,680 (72%)

Ever 28,243 (89%) 10,644 (38%) 7,603 (95%) 5,388 (71%)
*Identified retrospectively

Table 2 | Association between response to alert and time from 
alert to first antibiotic order

Difference in median hours 
from alert to antibiotics 
between:

unadjusted 
difference, hours 
(95% CI)

Adjusted 
difference, hours 
(95% CI)

Evaluation entered within 3 h 
(n = 22,982) − no evaluation 
entered within 3 h (n = 8,609)

−1.28  
(−1.50 to −1.02)

−1.12  
(−1.30 to −0.87)

Alert confirmed within 3 h 
(n = 8,587) – not confirmed 
within 3 h (n = 14,395)

−1.90  
(−2.02 to −1.74)

−1.85  
(−2.00 to −1.66)
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a perception that dismissing the alert is faster than evaluating and 
completing related documentation on the TREWS page. Increasing 
awareness about the benefits of timely evaluation and implementing 
alternative workflows during peak hours such as creating supple-
mental support teams, could improve uniformity of adoption of 
machine learning-based CDS systems.

Adoption of CDS has been studied across a wide range of clini-
cal applications25,60. These studies generally report low to moderate 
adoption, with clinicians responding to anywhere from 6–45% of 
alerts depending on the clinical task, interface design and workflow 
integration23–25,61. During this study, 1,965 providers entered an eval-
uation of a TREWS alert and 89% of alerts received an evaluation 

Table 3 | Potential factors influencing provider response to alerts

Factor Definition Rationale for inclusion

Patient presentation factors

Absence of key sepsis 
symptoms

True if no more than one of the following were met before the 
alert: lactate > 2.0 mmol/L, WBC > 12 109/L or WBC < 4 109/L and 
temperature >38.0 °C or temperature <36.0 °C

These three criteria are commonly 
associated with infection and sepsis. 
Providers may be more willing to dismiss 
alerts that present without multiple of these 
symptoms

Alternative diagnosis True if any of the following diagnoses were made during the patient’s 
stay based on the presence of ICD-10 codes: myocardial infarction, 
stroke, acute respiratory failure

Presence of an alternative diagnosis may 
increase the complexity of the diagnostic 
process by masking sepsis symptoms

Condition at risk for fluid 
overload

True if any of the following chronic conditions were present based on 
the presence of ICD-10 codes: COPD, CKD and CHF

Confirming the alert is related to initiation 
of the sepsis bundle. Providers may dismiss 
the alert on patients who are at risk for fluid 
overload because they do not want to initiate 
the sepsis bundle fluid requirement

Acute general severity The adjustment used the raw SAPS II score. For the risk ratio 
estimation, this feature was true if SAPS II was above the observed 
median

Patients with higher SAPS II may be more 
complex and have other conditions that 
mask sepsis symptoms

Chronic complexity The adjustment used the raw CCI score computed without age as 
a factor, as age is included as a separate factor. For the risk ratio 
estimation, this feature was true if CCI excluding age, was above the 
observed median CCI in the population

Providers may have a higher threshold for 
dismissing an alert on a patient with more 
comorbidities because they are at a higher 
risk of deterioration

Advanced age Age > 70 years Providers may have a higher threshold for 
dismissing an alert on an older patient 
because they are at a higher risk of 
deterioration

Environmental factors

High alert level True if the total number of TREWS alerts in the past 24 h in that unit 
exceeded the median for that unit and was greater than two alerts in 
the past 24 h

Providers may have alert fatigue if there have 
been a lot of alerts in the past day and be 
less likely to respond to new alerts

High admit volume True if the total number of admissions in the past 3 h in that unit 
exceeded the median for that unit and the number of new admissions 
was greater than two

Providers are busier when there are many 
new admissions to the unit and may be less 
likely to respond to alerts in a timely way

Alert occurred 7:00–15:00 True if alert occured between 7:00 and 15:00 This corresponds to the morning/early 
afternoon hospital shift, which tends to have 
fewer new admissions in most units

Alert occurred 15:00–23:00 True if alert occured between 15:00 and 23:00 This corresponds to the late afternoon/
evening shift, which tends to have increased 
rates of new admissions and buildup of 
volume in the ED

Alert occurred 23:00–7:00 True if alert occured between 23:00 and 7:00 This corresponds to the overnight shift, 
which tends to have higher total patient 
volume in the ED from buildup through the 
day, sparser provider coverage and fewer 
new admissions

Provider factors

ED provider True if provider caring for the patient at the time of the alert was an ED 
provider

ED providers interact with patients earlier 
in their stay when there is more uncertainty 
and have a higher patient load per hour

Provider experience with alert True if provider evaluated a previous alert within the past 30 d Providers who are more familiar with the 
alert, may be more aware of the alert and be 
more likely to respond again

CCI, Charlson comorbidity index; CHF, congestive heart failure; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disorder; SAPS, Simplified Acute Physiology Score; WBC, white blood cell.
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(Table 1). By using real-time interactions with a deployed clinical 
support system, we were able to assess the extent to which differ-
ent factors influenced real-time decision making and treatment at 
a large scale, thereby informing future system design. In a separate 
paper, we qualitatively analyzed additional factors impacting pro-
vider perception of TREWS and its integration into clinical work-
flows using semi-structured interviews62.

This study had several limitations. First, there is a lack of con-
sensus on how best to identify sepsis retrospectively. To maximize 
the reliability of the sepsis labels, we identified sepsis cases using an 
EHR-based sepsis phenotype that accounts for confounding comor-
bidities and has shown increased sensitivity and precision compared 
to alternatives36,37. We also added requirements for a substantial 
antibiotic course when analyzing dismissals of alerts on identi-
fied sepsis cases to ensure that they were being treated for infec-
tion; however, we cannot completely exclude the possibility that 
some patients had non-infectious syndromes mimicking sepsis and 
are examples of overtreatment. Second, we relied on International 
Classification of Diseases-10 (ICD-10) codes to identify the pres-
ence of chronic conditions and alternative diagnoses. While com-
mon in large retrospective studies, this may introduce some bias 
from coding practices. Third, all hospitals in this study were part 
of the same health system, which may limit its generalizability to 
other settings; however, the study includes a large cohort represent-
ing a diverse patient population from both academic and commu-
nity hospitals. Fourth, this study focuses on quantitative evaluation 

of provider interactions that were recorded within the tool itself 
and does not capture any sepsis-related discussions or actions that 
occurred outside the tool. As such, there may be alerts labeled as not 
evaluated that were still considered and discussed. We are unable 
to capture those interactions, but based on the high adoption rates 
observed, the majority of patients with sepsis received a timely 
evaluation within the tool. Fifth, this study assesses the extent to 
which each of the factors is associated with adoption in the context 
of TREWS, which has specific performance characteristics, inter-
face presentation and policy decisions about how to integrate alerts 
into clinical workflow. The relative importance of different factors 
may vary depending on the performance characteristics of the sys-
tem. Increased deployment of data-driven CDS systems may change 
provider attitudes in the future.

Finally, while we included a variety of features related to patient 
presentation, hospital environment and provider characteristics, 
there may remain additional sources of confounding that impact 
the adoption of alerts. For instance, we incorporated information 
about provider type and experience in the tool to the extent avail-
able, but we were unable to access additional information about pro-
vider background and attitudes toward CDS. These results should 
not be taken as causal claims, but rather as hypothesis-generating 
associations to be later confirmed by causal studies. Further work 
is needed to understand how these additional characteristics may 
affect overall adoption and the potential for alert adoption to lead to 
over-reliance on the alerts (such as over-prescription of antibiotics  

Table 4 | Associations between patient, environmental and 
provider factors and provider evaluation of TREWS alerts

Factor (number of patients 
with that factor present out 
of 3,775 patients in the study 
population)

unadjusted risk 
ratio (95% CI)

Adjusted risk 
ratio (95% CI)

Patient presentation factors

Absence of key sepsis 
symptoms (n = 968)

1.01 (0.98–1.04) 0.99 
(0.96–1.03)

Alternative diagnosis (n= 2,114) 0.99 (0.96–1.02) 1.00 (0.97–1.03)

Condition at risk for fluid 
overload (n = 1,926)

1.02 (1.00–1.04) 1.01 (0.98–1.04)

Acute general severity 
(n = 1,887)

0.98 (0.96–1.01) 0.97 (0.94–1.01)

Chronic complexity (n = 2,733) 1.04 (1.00–1.08) 1.02 (0.97–1.08)

Advanced age (n = 1,810) 1.05 (1.02–1.10) 1.06 (1.03–1.10)

Environmental factors

High alert level (n = 1,749) 0.96 (0.93–0.99) 0.94 
(0.91–0.96)

High admit volume (n = 1,557) 1.01 (0.98–1.05) 0.99 
(0.96–1.03)

Alert occurred 7:00–15:00 
(n = 1,310)

1.06 (1.04–1.09) 1.03 (1.01–1.06)

Alert occurred 15:00–23:00 
(n = 1,686)

0.94 (0.92–0.97) 0.98 
(0.95–1.00)

Alert occurred 23:00–7:00 
(n = 779)

1.00 (0.95–1.03) 1.01 (0.97–1.04)

Provider factors

ED provider (n = 3,455) 1.35 (1.24–1.49) 1.22 (1.14–1.32)

Provider experience with alert 
(n = 1,574)

1.25 (1.21–1.29) 1.22 (1.19–1.26)

Associations in bold indicated confidence intervals that exclude zero.

Table 5 | Associations between patient, environmental and 
provider factors and provider dismissal of TREWS alerts

Factor (number of patients 
with that factor present out 
of 2,463 patients in the study 
population)

unadjusted risk 
ratio (95% CI)

Adjusted risk 
ratio (95% CI)

Patient presentation factors

Absence of key sepsis 
symptoms (n = 576)

1.01 (0.86–1.19) 1.28 (1.06–1.45)

Alternative diagnosis (n = 1,409) 1.27 (1.14–1.42) 1.11 (0.97–1.32)

Condition at risk for fluid 
overload (n = 1,286)

1.10 (0.97–1.21) 1.08 (0.97–1.22)

Acute general severity 
(n = 1,271)

1.39 (1.23–1.56) 1.46 (1.28–1.66)

Chronic complexity (n = 1,823) 0.87 (0.76–0.98) 0.90 
(0.75–1.05)

Advanced age (n = 1,232) 0.74 (0.65–0.81) 0.69 
(0.60–0.75)

Environmental factors

High alert level (n = 1,113) 0.91 (0.80–1.01) 1.01 (0.90–1.13)

High admit volume (n = 1,031) 0.83 (0.73–0.94) 0.98 (0.86–1.12)

Alert occurred 7:00–15:00 
(n = 885)

0.87 (0.74–0.99) 1.12 (0.99–1.28)

Alert occurred 15:00–23:00 
(n = 1,079)

1.04 (0.92–1.16) 1.20 (1.09–1.33)

Alert occurred 23:00–7:00 
(n = 499)

1.15 (1.03–1.29) 1.19 (1.07–1.36)

Provider factors

ED provider (n = 2,297) 0.39 (0.34–0.43) 0.47 
(0.40–0.54)

Provider experience with alert 
(n = 1,167)

0.58 (0.48–0.64) 0.66 
(0.56–0.73)

Associations in bold indicated confidence intervals that exclude zero.
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in response to sepsis alerts). Quantifying over-prescription result-
ing from an alert system is important for understanding the 
potential harms63; however, we currently lack metrics to assess 
over-prescription and leave this to future work.

Using real-time interactions with a machine learning-based sepsis 
support system, we characterized the adoption and clinical impact of 
the tool and identified key factors related to failure to use the tool. 
Overall, TREWS showed high provider adoption that was, in turn, asso-
ciated with improvements in a key clinical process metric for patients 
with sepsis: time to antibiotics. Analysis of factors driving adoption 
showed provider-related factors, such as experience with the system 
and working in the ED, where providers had increased exposure to the 
system and had the strongest association with willingness to evaluate 
alerts. While patient presentation factors such as patient severity and 
absence of key sepsis symptoms were not significantly associated with 
the likelihood of evaluation, they did impact the likelihood of dismiss-
ing the alert. Education to increase awareness of variation in patient 
presentation may encourage providers to accept recommendations on 
sepsis cases with less common presentation. In addition to improving 
model performance, future machine learning-based systems should 
focus on the provider in their design choices to encourage adoption 
and realize the potential benefit of these systems.
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Methods
This study was approved by the Johns Hopkins University Institutional Review 
Board (no. 00252594) and a waiver of consent was obtained.

EHR-based phenotyping definition of sepsis. Sepsis was defined consistent 
with the third sepsis consensus definition (Sepsis-3) as suspicion of infection and 
related organ dysfunction38. This definition was implemented using EHR-based 
sepsis phenotyping (ESP)36,37, which accounts for certain confounding comorbid 
conditions that can cause patients to be mistakenly identified as having sepsis by 
automated systems64,65 and improves the reliability of automated or EHR-confirmed 
sepsis labels36,37. Described in full in Henry et al.36,37, suspicion of organ dysfunction 
was determined based on administration of new intravenous antibiotic with at least 
four days of antibiotic treatment and a culture within 48 h or the presence of both 
documentation of sepsis and two of the systemic inflammatory response syndrome 
criteria within 6 h of each other36,37. As in the Centers for Disease Control and 
Prevention’s Adult Sepsis Event Toolkit, sepsis-related organ dysfunction was 
determined based on the initiation of vasopressors or mechanical ventilation or 
an acute change in serum lactate, serum creatinine, total bilirubin level or platelet 
count from baseline65,66; however, ESP expands on the Adult Sepsis Event Toolkit 
criteria by also including persistent hypotension, altered mental status and an acute 
change in international normalized ratio as indicators of organ dysfunction, as in 
Sepsis-3 and by filtering out changes in these organ dysfunction criteria that are 
more likely due to a confounding comorbid condition36,37.

Targeted Real-time Early Warning System. Description of the TREWS model. 
TREWS is a machine learning-based early warning system and decision support 
tool that was trained using historical EHR data to recognize sepsis early in 
its progression. To further improve alert performance relative to the original 
model proposed in Henry et al., the system uses several machine learning-based 
techniques for tuning to patient context67, handling missing data68, suppressing 
untrustworthy alerts69 and improving reliability and transportability70–73. TREWS 
consists of a mixture model of Cox proportional hazard models to account for 
patient heterogeneity67. The mixture model uses patient demographics, age and 
chronic history to assign patients to one or more groups (Extended Data Table 4).  
Within each group, data from patients assigned to that group are used to learn 
a Cox proportional hazards model as described by Henry et al.7,74. The model is 
trained iteratively to simultaneously learn the optimal assignment of patients to 
groups and the optimal model parameters to predict risk of sepsis within each 
group. To predict risk for an individual patient, each model that a patient is 
assigned to outputs a predicted risk value and these values are then combined 
using a weighted average based on group assignment. The risk score is then used by 
the alert policy to generate alerts. The alert policy used during this deployment is 
described in the ‘TREWS workflow’ section.

As described by Henry et al., the current model uses routinely collected 
laboratory measurements, vital signs, notes, medication history (excluding 
antibiotics), procedure history and clinical history from the EHR as inputs 
(Extended Data Table 4)7,74. The individual Cox proportional hazards models use 
the same feature processing and training sample creation as described by Henry 
et al.7,74; however, the model used here extends the model reported by Henry 
et al. in several key ways. First, the model reported by Henry et al. was trained 
exclusively on intensive care unit data and used to predict septic shock among 
patients in the intensive care unit7,74. The model in this paper was trained using 
data across the hospital and used to predict the risk of sepsis in all patients in 
the ED, observation, general ward and intensive care units7,74. Second, instead of 
learning a single Cox proportional hazard model, the current model combines 
several Cox proportional hazards models using a mixture of experts model as 
described above. Finally, additional features were identified and added based on 
discussions with providers. These additional features include narcotics blood tests, 
orders for transfusions and sedatives that were identified as common confounders 
of sepsis.

Deployment process. Before deployment at a new hospital, the alert threshold was 
tuned to achieve an 80% sensitivity at that hospital based on applying the model 
to historical data from that hospital. The same model parameters were used at 
each site. The deployment at each hospital was conducted in three steps. First, 
a team of educators including clinicians from the site and members of the tool 
development team, met with clinicians to explain the tool’s functionality, identify 
clinical champions and to verify the process for clinical workflow integration. 
Hospital administrators, quality and safety officers and clinical experts advocated 
for the tool and helped determine how best to integrate it into the clinical workflow 
based on hospital policies. For example, at one site, hospital staff would review any 
pending TREWS alerts with the ED physician before admitting the patient to a 
general ward unit. During this period, the alert was active in the background and 
the technical team monitored the alert volume across different subpopulations in 
the hospital. Second, deployment was piloted to verify the integration of the system 
at each site with a subset of the users. Finally, the alert was activated in all ED and 
inpatient units and the deployment entered a maintenance stage. Throughout the 
deployment process and maintenance period, the technical and clinical teams 
monitored alert performance and provider use in different units through weekly 

emails summarizing alert interactions, performance and volume. Emails reporting 
frequency of providers addressing the alerts and completing the bundle items by 
unit were circulated to quality and safety officers, clinical department heads, the 
deployment team and clinical champions. Alerts included in the analyses in this 
study occurred after activating the system in all units.

TREWS workflow. To minimize workflow interruptions and alert fatigue, TREWS 
uses a passive approach to signal new alerts. Instead of triggering a pop-up box or 
a pager message, the system flags patients visually within the EHR, but does not 
actively interrupt the provider or require an immediate response before allowing 
the provider to continue using the EHR. Design choices about the alert and 
its timing were made in collaboration with the clinical team and refined based 
on initial feedback. Once the alert appears (for example, as an icon within the 
clinician’s patient list), a provider (physician or advanced practice provider) can 
click an icon to address the alert leading to a real-time workflow within the patient 
chart. After an alert is triggered, it remains active for at least 15 min or until the 
indicator of organ dysfunction is resolved or the predicted risk of sepsis drops 
below the alert threshold.

From within the TREWS interface, the provider can view summary data 
gathered by TREWS, including factors leading to why the alert was generated, 
probability measures indicating likelihood of mortality and sepsis and the status 
of sepsis-related treatments. Providers are asked to enter an evaluation of whether 
or not they believe the patient currently has sepsis; however, the response is not 
mandatory. An evaluation consists of entering a suspected source of infection or 
clicking a button to indicate that no new or worsening infection is present and 
then reviewing the list of organ dysfunction indicators and removing any that the 
provider believes should not be attributed to sepsis (Extended Data Fig. 2). If a 
provider leaves the TREWS page without entering an evaluation, the interaction 
is not counted as an evaluation in the context of this study. A nurse can also 
pre-screen an alert and escalate it to a provider if there are indications of new or 
worsening infection or altered mental status.

If the provider enters a suspected source of infection and affirms that at least 
one indicator of organ dysfunction is likely due to sepsis, the alert is considered to 
be confirmed and a treatment panel is activated to track steps toward completion 
of the recommended treatments included in the CMS SEP-1 core measure’s 
sepsis bundle40. Providers are able, but not required, to place orders for tests and 
treatments in the sepsis bundle. Orders placed outside of the TREWS interface 
are also monitored by TREWS and included in its determination of bundle 
completeness. No further alerts are generated after a patient has a confirmed sepsis 
alert, as current treatment protocols focus on the first episode of sepsis.

After an alert is dismissed based on the provider evaluating the patient as not 
having sepsis, no further alerts are generated on that patient for at least 72 h. After 
that time period, the alert resets and may trigger again.

Assessing the retrospective model performance of TREWS. Study population. To 
evaluate the retrospective accuracy and lead time of TREWS, we used a set of EHRs 
from adult ED, medical and surgical patients at one academic and two community 
hospitals in Maryland with admission between 1 January 2016 and 31 March 2018. 
The included hospitals were Howard County General Hospital, Johns Hopkins 
Hospital and Bayview Medical Center. We treated each time a patient presented to 
the ED or was admitted as a unique patient encounter and included each encounter 
separately. Patients were excluded if they were discharged from an ED or were 
admitted to a labor or maternity unit.

Analysis. We measured accuracy using per-encounter area under the receiver 
operating characteristic curve, PPV and sensitivity. As described above, positive 
sepsis cases were identified using ESP36,37. Additionally, we measured alert lead 
time as the median time (in hours) from the alert to the patient’s first antibiotic 
order and the percentage of patients with at least 3, 6 and 12 h between the alert 
and the patient’s first antibiotic order. We measured lead time only among patients 
with sepsis and an alert. We used an alert threshold chosen to give 0.8 sensitivity 
on the original development data. As our primary interest is in lead time for 
patients who were not recognized immediately by clinicians, we excluded from 
our lead-time analyses any patient who received an antibiotic order within 3 h 
of arrival (defined as the earlier of ED triage or admission to an inpatient unit). 
We report lead time among all patients, as well as among patients who died in 
hospital. During the period covered by this pre-deployment data, providers used a 
rule-based alert based on the SEP-1 criteria, which may have influenced antibiotic 
timing in the data.

Prospective analysis of alert response. Study population. The primary study 
population included all adults who presented to the ED or were admitted to 
a medical or surgical unit at any of five hospitals (three community and two 
academic hospitals) in the Maryland and DC areas that either (1) had a prospective 
TREWS alert or (2) were retrospectively identified as having sepsis based on 
specified criteria. The included hospitals and date ranges were Howard County 
General Hospital (1 April 2018 to 31 March 2020), Suburban Hospital (1 October 
2018 to 31 March 2020), Bayview Medical Center (1 February 2019 to 31 March 
2020), Johns Hopkins Hospital (1 April 2019 to 31 March 2020) and Sibley 
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Memorial Hospital (1 May 2019 to 31 March 2020). The start date at each hospital 
was based on the timing of the staggered deployment across the five sites. As 
described above, we treated each time that a patient presented to the ED or was 
admitted as a unique patient encounter and included each encounter separately. 
Population characteristics and overall adoption rates (study question 1) were 
estimated using all patient encounters with an alert or who were retrospectively 
identified as having EHR-confirmed sepsis based on ESP during this period36,37.

When evaluating the association between adoption and clinical care, and 
association between various factors and evaluation or confirmation (study 
questions 2, 3.1 and 3.2) we included all patients wth sepsis who received an alert 
in the ED or an inpatient unit and who had not received an antibiotic order at the 
time of their alert. This criterion was used to restrict the analysis to cases where 
there was opportunity for the alert to impact care decisions. To further ensure that 
the antibiotic order and the alert were related to the same episode of sepsis, we 
only included patients who received antibiotics within 24 h after the alert. While 
initiating sepsis treatment is recommended within 3 h of diagnosing sepsis, a 24-h 
window was chosen to avoid excluding cases where there was delayed recognition 
(for example, if a provider reviewed and responded to the alert after the patient was 
transferred to a new unit) thereby biasing the results toward patients who received 
prompt treatment within 3 h of the alert.

Study question 1: assessing overall alert adoption. To understand the adoption of 
TREWS, we report the number and percentage of alerts with evaluations entered 
within 1, 3 and 6 h after the alert or ever entered. Additionally, among alerts with 
an evaluation entered, we report the percentage that were confirmed by a provider 
in real-time as having sepsis. We report these numbers for all patients with an alert 
and patients who were retrospectively identified as having sepsis, as described 
above36.

Study question 2: timing of antibiotics relative to alerts. To assess the association 
between tool adoption and patient care, we examined the extent to which 
using the TREWS page to record an evaluation for sepsis within 3 h after the 
alert was associated with the timing of a patient’s first antibiotic order, a key 
element of sepsis treatment33,34,41. We estimated the unadjusted and adjusted 
differences in median time from alert to first antibiotic order between patients 
who had an evaluation entered within 3 h of the alert and those who did not. The 
adjustment variables included patient demographics, medical history, laboratory 
measurements, vital signs, comorbidities and admitting hospital. As in previous 
studies33,34,75, we adjusted for patient age, documented sex and comorbidities as 
defined by the CCI as well as the presence of ICD-10 codes for history of diabetes 
(with and without complications), dementia, malignant tumors, metastatic solid 
tumors, end-stage renal disease, CHF, acute liver disease, gastrointestinal bleeding 
and COPD. We also adjusted for acute severity based on individual sepsis-related 
organ failure assessment score components and APACHE II score76,77, as well 
as several sepsis-relevant laboratory measurements, vital signs and treatments, 
including systolic blood pressure, altered mental status indicated by Glasgow Coma 
Score below 15 (ref. 75), temperature, WBC count, lactate above 2 mmol/L and 
indicators for vasopressors and mechanical ventilation. Additionally, to account for 
potential differences in clinical practice, we adjusted for which hospital a patient 
was admitted to and, for ED patients, whether the trauma team was activated 
upon arrival. For laboratory measurements and vital signs, the most recent 
measurement taken in the 24 h before the alert was used except in the case where 
the alert occurred within 12 h of patient arrival, in which case the first available 
measurement taken within 12 h of arrival was used. Sepsis-related organ failure 
assessment and APACHE II scores were calculated using the worst measurements 
taken in the 24 h before the alert except in the case where the alert occurred within 
12 h of patient arrival, in which case the worst measurement taken within 12 h of 
arrival was used. To account for non-linearities, continuous laboratory values and 
vital signs were included as piecewise linear terms according to the thresholds used 
in APACHE II. We repeated this analysis to compare the unadjusted and adjusted 
differences in median time from alert to antibiotic order between confirmed alerts 
versus alerts that were either not evaluated within 3 h or were dismissed.

Study question 3.1: factors associated with alert adoption. To assess the association 
between patient, environmental and provider factors and provider response to 
alerts, we measured the association between these factors and whether or not 
a patient evaluation was entered within 3 h after the alert. Specific factors that 
might affect alert response were identified based on clinical feedback from ED, 
intensive care unit and general ward providers actively using the tool and who had 
experience managing patients with sepsis (Table 3). Patient factors included age, 
chronic complexity as measured by age and CCI78 and SAPS II (Table 3). We also 
accounted for presence of sepsis-related symptoms, an alternative diagnosis that 
may complicate sepsis diagnosis and the presence of chronic condition(s), such 
as COPD, CHF or CKD, which may make a provider hesitant to follow the sepsis 
bundle guidelines for giving high-volume fluids. We characterized environmental 
factors based on the shift during which the alert occurs, the TREWS alert burden 
in the unit, computed as the number of alerts that occurred in that unit in the past 
24 h and the admit volume computed as the number of new patients admitted 
to that unit in the past 3 h. Provider factors included previous experience with 

TREWS and location of care provision (ED versus inpatient) (Table 3). Due to 
the low number of inpatient alerts, we were unable to further divide inpatient 
providers into medical and surgical providers.

For each factor, we estimated the adjusted and unadjusted risk ratio of whether 
the alert would be evaluated within 3 h with versus without that factor present. 
Due to the smaller number of patients with each given factor and alert response 
type, we used a simplified set of adjustment variables compared to study question 
2. We also added additional environmental and provider adjustment variables 
based on the factors considered in Table 3. Specifically, we adjusted for patient 
demographics (age and sex), chronic comorbidities as measured by CCI and acute 
severity as measured by SAPS II. We adjusted for chronic conditions associated 
with increased risk of fluid overload, indicated by the presence of an ICD-10 code 
for CKD, COPD or CHF. We accounted for acute comorbidities that may impact 
the diagnosis of sepsis by adjusting for the presence an ICD-10 code for myocardial 
infarction, stroke or acute respiratory failure, as well acute symptoms of sepsis 
(lactate > 2.0 mmol/L, WBC > 12 109/L or WBC < 4 109 and temperature >38.0 °C 
or <36.0 °C). Based on the list of environmental and provider factors in the 
analysis, we adjusted for alert level in the past 24 h, number of admissions in that 
unit in the past 3 h, an indicator of whether the alert occurred between 7:00–15:00, 
15:00–23:00 or 23:00–7:00, whether the provider was an ED provider and whether 
the provider had previous experience with the alert.

Study question 3.2: factors associated with alert dismissal. To assess which patient, 
environmental and provider factors were associated with a provider’s decision 
to dismiss an alert on a patient later identified as having sepsis, we estimated the 
association between these factors and the evaluation entered for patients with 
sepsis with an evaluation entered within 3 h. As before, we excluded all patients 
who received an antibiotic order before the alert and also excluded patients with 
no evaluation entered within 3 h. As this question examines factors related to 
potentially incorrect dismissal of alerts on retrospectively identified patients 
with sepsis, we chose to use a more conservative inclusion criteria and restricted 
the study population to only the patients with sepsis who received a substantial 
antibiotic course, namely 4 d consecutively of antibiotics or antibiotics up until the 
time of in-hospital death, discharge to hospice or transfer to another acute care 
facility65. All antibiotics included in the CMS SEP-1 core measure were included. 
We referred to this criteria as having ‘4+ qualifying antibiotic days’. We assessed 
all patient factors described above and adjusted for all patient, provider and 
environmental factors.

Statistical analyses. Adjusted median time to first antibiotic order (study question 
2) was estimated using quantile regression as implemented in the statsmodels 
Python package (v.0.12.2)79. Adjusted risk ratios (study question 3) were estimated 
using logistic regression as described by Norton et al.80. The binary outcome was 
regressed onto the factor of interest and all adjustment variables, then the adjusted 
risk ratio was estimated as the sample average regression output with the factor 
of interest set to one for all patients over the sample average regression output 
with the factor of interest set to zero for all patients. All confidence intervals were 
estimated using nonparametric bootstrapping with 3,775 bootstrap samples used to 
estimate percentile-based 95% CIs. All models and statistics were computed using 
Python (v.3.7.6).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data are not publicly available because they are from electronic health records 
approved for limited use by Johns Hopkins University investigators. Making 
the data publicly available without additional consent, ethical or legal approval 
might compromise patients’ privacy and the original ethical approval. To perform 
additional analyses using these data, researchers should contact A.W.W. or S.S. to 
apply for an institutional review board-approved research collaboration and obtain 
an appropriate data-use agreement.

Code availability
The TREWS early warning system described in this study is available from 
Bayesian Health. The underlying source code is proprietary intellectual property 
and is not available. Code for the primary statistical analyses can be found at 
https://github.com/royadams/henry_et_al_2022_code.
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Extended Data Fig. 1 | Retrospective predictive performance of the TREWS model. Performance of the TREWS model on retrospective data. Figure (a) 
shows the receiver operating characteristic curve and Figure (b) shows the sensitivity–PPV curve (also referred to as the precision-recall curve).
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Extended Data Fig. 2 | Annotated screenshot of the TREWS interface. Annotated screenshot of the TREWS provider evaluation page. Annotations show 
the main provider actions: reviewing the alert explanation, indicating whether the patient has a suspected source of infection and reviewing sources of 
organ dysfunction.
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Extended Data Table 1 | Time from alert to first antibiotic order among retrospectively identified sepsis patients
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Extended Data Table 2 | TREWS alert volume per day during the study period including re-alerts and alerts flagging patients who are 
candidates for escalation
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Extended Data Table 3 | Population characteristics
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Extended Data Table 4 | Model features
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