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The promise of precision medicine lies in data diversity. More 
than the sheer size of biomedical data, it is the layering of mul-
tiple data modalities, offering complementary perspectives, 
that is thought to enable the identification of patient sub-
groups with shared pathophysiology. In the present study, we 
use autism to test this notion. By combining healthcare claims, 
electronic health records, familial whole-exome sequences 
and neurodevelopmental gene expression patterns, we iden-
tified a subgroup of patients with dyslipidemia-associated 
autism.

The National Academy of Sciences’ Precision Medicine Report 
proposes that ‘when multiple molecular indicators are used in  
combination with conventional clinical, histological, and labora-
tory findings, they offer the opportunity for a more accurate and  
precise description and classification of disease’1. We tested whether 
this proposed multimodal precision medicine approach could  
identify distinct disease subtypes in large clinical, genomic and 
transcriptomic data. We used autism spectrum disorder (ASD)  
as a test case, in light of its extreme complexity and societal  
impact. ASD is now estimated to affect 1 in 54 children in the USA, 
80% of whom are boys2. This behaviorally defined set of neurode-
velopmental disorders currently lacks effective treatment and is 
debilitating for many families3. Recent genomic studies show that 
the clinical heterogeneity of ASD is matched by extreme genetic 
heterogeneity4. Dissecting the patient subgroups and matched 
molecular networks that underlie such complexity is essential to 
enable accurate early diagnosis, improve outcomes and ultimately 
facilitate precision medicine approaches to ASD5,6, as exemplified 
in oncology7–9.

Toward this goal, we integrated large datasets of familial 
whole-exome sequences (WESs), neurodevelopmental expression 
patterns, electronic health records (EHRs) and healthcare claims 
(Extended Data Fig. 1 and Methods). We identified variants of inter-
est by examining clusters of neurodevelopmentally co-regulated, 
sex-differentially expressed, ASD-segregating deleterious varia-
tions, consistent with our current understanding of the complex-
ity, origin and epidemiology of ASD3. Specifically, we first obtained 
spatiotemporal expression data from typically developing human 
brains using 524 samples from 26 brain regions of 42 subjects  

(23 males, 19 females) of the BrainSpan Atlas of the Developing 
Human Brain. As ASD is thought to arise during prenatal brain 
development and be driven by multiple genomic variants within 
each individual, we identified clusters of exons that are co-expressed 
during early human brain development (Fig. 1a). Moreover, in 
light of the 4:1 male:female ratio in ASD, the enrichment of sex-
ually different prenatal gene expression for ASD risk genes10 and 
ASD-dysregulated co-expression modules11, as well as findings of 
sexually different gene expression programs in ASD mouse mod-
els12,13, we focused on clusters that are differentially expressed 
between males and females during prenatal neurodevelopment, 
based on data from 20 individuals (10 males and 10 females;  
Fig. 1b). Second, we compiled WES datasets of 3,531 individuals 
from 1,704 families who have 1 child with ASD and 1 unaffected 
sibling (simplex families) and 50 families with 2–5 affected siblings 
(multiplex families) via the National Institute of Mental Health 
(NIMH) Data Archive’s National Database for Autism Research 
(NDAR). After joint variant calling within the BrainSpan intervals, 
we identified variants that are discordant between siblings of sim-
plex families, and those that are shared among all affected siblings of 
multiplex families (Fig. 1c). Of all these ASD-segregating variants, 
we focused on inherited, likely gene-disrupting (LGD) ones, namely 
nonsense, frameshift and splice-site mutations (Fig. 1d).

We mapped variants back to exon clusters to identify neurode-
velopmentally co-regulated, ASD-segregating deleterious variants 
that might have sex-specific effects during early human neurode-
velopment (Fig. 1e). We used affected sibling-pair (ASP) analysis 
to assess the significance of multiplex family variant sharing, and 
permutation tests to assess the increased burden of deleterious, neu-
rodevelopmentally co-regulated, sex-differentially expressed varia-
tion in probands compared with their unaffected siblings, while 
stringently controlling for multiple hypothesis testing (Methods). 
Starting with an average of 32,000 SNPs and 3,500 high-confidence 
insertions–deletions (indels) per individual exome, this approach 
highlighted, on average, 50 ASD-relevant SNPs and 130 indels 
per individual (Supplementary Fig. 1). Overall, this analysis iden-
tified 33 neurodevelopmentally co-regulated, sex-differentially 
expressed clusters with ASD-segregating deleterious variation  
(Supplementary Table 1).
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Functional enrichment analysis of the identified exon clusters 
revealed several molecular themes (Supplementary Table 1), most 
of which have been previously described in ASD. These include 
chromatin and transcriptional regulation, immune function and 
synaptic function4. However, it also revealed a previously unrecog-
nized molecular convergence, lipid regulation. For example, a small 
cluster containing five exons of the low-density-lipoprotein receptor 
(LDLR) gene (19p13.2) was found to carry ASD-segregating deleteri-
ous variation (P = 1.93 × 10−7, Fig. 2a,b). Another example of a large 
cluster, containing 1,926 exons, includes 17 protein-coding gene 
members of the ‘Reactome metabolism of lipids and lipoproteins’ 
pathway, a pathway of 478 human lipid and lipoprotein metabolism 

genes (Gene Set Enrichment Analysis (GSEA) P = 4.53 × 10−7, cluster 
P = 1.18 × 10−12). ASD-segregating variants predicted to disrupt the 
function of genes in this cluster are collectively expected to alter LDL, 
cholesterol and triglyceride levels (Fig. 2c). We therefore directly 
tested this hypothesis in two large clinical cohorts. Of note, we found 
no relationships between LGD variants in lipid metabolism genes 
and intelligence quotient (IQ; Supplementary Figs. 2 and 3) or sex 
(Supplementary Figs. 4 and 5) among individuals with ASD.

To test the hypothesis that dyslipidemia might be a convergent 
etiology in ASD, we compared blood lipid profiles and dyslipid-
emia diagnoses among individuals with ASD, their unaffected fam-
ily members and unrelated matched controls. Using the medical 

Time

N = 524 samples

a

−2

−1

0

1

2

3

256 1,024 4,096 16,384

Days (log scale)
N

or
m

al
iz

ed
 n

eo
co

rti
ca

l e
xp

re
ss

io
n

Male
Female

N
eu

ro
de

ve
lo

pm
en

ta
l

ex
pr

es
si

on

Ex
pr

es
si

on

Ex
pr

es
si

on

Time Time

N = 2,750,021 individuals

Prenatal Postnatal

N = 3,531 individuals

b c

d

e

f g

GNPAT.e16

PSMD6.e1

PSMC6.e12

NFU1.e1

PRPF39.e11

ZCRB1.e1

FRG1.e11

PSMA4.e6

RP11-718G2.3.e1
PSMA7.e1

COX16.e1

CCDC59.e3

CHCHD1.e2

LSM1.e1
PSMA3.e11

PSMA3.e10
NDUFA6.e1

PDCD5.e6
RP11-841C19.3.e1

CWC15.e2

CWC15.e1

PPP2R3C.e1

SSB.e13

GTF2A2.e1
C8orf59.e2

LSM3.e4
SSBP1.e9

RP11-45J1.1.e1

DDX50.e17

AC006028.11.e1
SSBP1.e8

LSM3.e3
CHCHD2.e1

C6orf203.e6

GLRX3.e12

NDUFA6.e2

MRPL13.e2
METTL5.e2

RP11-90P5.2.e2

MAGOHB.e1

TMSL3.e1

UCHL3.e11

PFDN4.e6

PFDN4.e4

ARID4B.e1
RBM34.e1

RPAIN.e8

TBCA.e1

RP11-111K18.1.e3

PSMA7.e2

AC008073.5.e1

PSMA6.e8

ARL3.e1

SEC61G.e2

SEC61G.e1

TIMM9.e1

SEC24B.e25
GTF2F2.e10

TIMM9.e2

GNPAT.e17

C7orf36.e4

TXNDC17.e3

C4orf27.e1

PSMA2.e1

NSA2.e7

TBCA.e4

C8orf59.e3

BIRC2.e10

GTF2A2.e2 RP11-561B11.2.e9

FRG1.e12

MRPL13.e3TAF12.e3

UBE2E1.e11

LPL.e11 LPL.e12

LPL.e10

LPL.e13

LPL.e3

LPL.e5

LPL.e6
LPL.e8

LPL.e9

LPL.e7

CYP2E1.e12

SYCE1.e2SYCE1.e5

SYCE1.e11SYCE1.e7

SYCE1.e8

SYCE1.e9

SYCE1.e10

SYCE1.e6

CD22.e12

CD22.e9

CD22.e14

CD22.e4

CD22.e11

TMEM235.e6

CLDN11.e6

CD22.e6
CD22.e7

CD22.e13

CD22.e5

CERCAM.e2

CD22.e3

RP11-597D13.7.e3

CD22.e8

CD22.e10

CERCAM.e1

DISCOVERY

VALIDATION

EHR
Claims

N = 34,003,107 individuals

i

ii

iii

iv

Fig. 1 | Independent sources of information used to identify molecular networks contributing to ASD. a, Neurodevelopmentally co-regulated exons 
identified by clustering correlated spatiotemporal RNA-seq data of the developing human brain. b, Differential expression analysis between males and 
females identified sex-different exon clusters. c, ASD-segregating variants detected in WES data from 3,531 individuals belonging to 1,704 simplex and 
50 multiplex families. d, Various gene models used to identify LGD variants, including nonsense (d, ii), frameshift (d, iii) and splice-site (d, iv) mutations, 
the impact of which on the wild-type transcript (d, i) is depicted in red. e, Information streams a–d were integrated to identify clusters of sex-differentially 
expressed, neurodevelopmentally co-regulated, ASD-segregating deleterious variants. f,g, Lipid dysregulation, a previously unreported molecular theme in 
nonsyndromic ASD, was validated using large EHR data (f; n = 2,750,021 individuals) and massive health claims data (g; n = 34,003,107 individuals).  
b,g, Images were prepared using BioRender (BioRender.com).
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records of 2,750,021 individuals seen at Boston Children’s Hospital 
(BCH), including 25,514 children with ASD, we compared the 
results of common lipid lab tests between children with ASD and 
matched individuals with no ASD-related diagnoses. Tests included 
fasting LDL, total cholesterol and triglycerides, which, of note, are 
interdependent14. We found that children with ASD have blood 
lipid profiles that are significantly outside the physiological range 
(LDL: OR = 1.48, 95% CI = (1.36, 1.61), P = 1.06 × 10−20; total cho-
lesterol: OR = 1.69, 95% CI = (1.49, 1.92), P = 7.14 × 10−15; triglyc-
erides: OR = 1.33, 95% CI = (1.20, 1.46), P = 1.73 × 10−8; Fig. 2d 
and Extended Data Fig. 2). Further stratification based on factors 
known to affect lipid levels, including age, sex and metabolic state, 
consistently demonstrated population-level differences between 
individuals with ASD and matched controls (P = 1.79 × 10−4; Fig. 2e  
and Supplementary Figs. 6 and 7). For this purpose, an altered 
metabolic state was defined by the presence of one or more obesity, 
diabetes or metabolic syndrome X diagnoses.

We also assessed the comorbidity of ASD and dyslipidemia  
using healthcare claims data from 34,003,107 individuals. We  
examined the prevalence of dyslipidemia diagnoses in 80,714  
individuals diagnosed with ASD, and repeatedly sampled unrelated 
controls matched by age, sex and zip code, as a marker of socio-
economic status. We found significant enrichment of dyslipidemia 
diagnoses in individuals with ASD (OR = 1.93, 95% CI = (1.88, 
1.99), P < 1 × 10−323; Fig. 2f). Moreover, consistent with our 
genetic findings in inherited variants, both maternal and paternal  
dyslipidemia were associated with ASD in the offspring (OR = 1.16, 
95% CI = (1.12, 1.20), P = 5.28 × 10−18 for mothers, and OR = 1.13, 
95% CI = (1.09, 1.16), P = 1.92 × 10−14 for fathers; Extended Data  
Fig. 3). To control for genetic background and familial eating hab-
its, we further compared dyslipidemia diagnoses in individuals 
with ASD and their unaffected siblings, revealing an association of 
dyslipidemia and ASD within families (OR = 1.76, 95% CI = (1.61, 
1.92), Fisher’s P = 2.25 × 10−36). All in all, in this US-wide dataset, 
scaled across multiple healthcare institutions, comorbid dyslipid-
emia was found in 6.55% (95% CI = (6.38%, 6.72%)) of individuals 
with ASD.

We next compared core ASD-related features between individu-
als with dyslipidemia-associated ASD and individuals with ASD 
and no dyslipidemia (Extended Data Fig. 4). Several clinical char-
acteristics were more common in dyslipidemia-associated ASD,  

including epilepsy (OR = 1.33, 95% CI = (1.18, 1.51), P = 5.73 × 10−6), 
sleep disorders (OR = 1.51, 95% CI = (1.36, 1.69), P = 1.35 × 10−13) 
and attention deficit hyperactivity disorder (OR = 1.30, 95% 
CI = (1.23, 1.39), P = 4.61 × 10−18), suggesting that dyslipidemia 
might contribute to altered neurodevelopment in general.

We further characterized the diagnostic spectrum of individuals 
with dyslipidemia-associated ASD compared with individuals with 
ASD and no dyslipidemia (Fig. 2g). We excluded individuals with 
obesity, diabetes and metabolic syndrome X, which are known to 
affect lipid levels. Several endocrine and metabolic diagnoses were 
associated with dyslipidemia in ASD, including anemia (OR = 6.00, 
95% CI = (5.30, 6.80), P = 5.84 × 10−174), hypothyroidism (OR = 6.19, 
95% CI = (5.42, 7.08), P = 3.93 × 10−157) and vitamin D deficiency 
(OR = 5.02, 95% CI = (4.40, 5.73), P = 3.93 × 10−157). Although each 
of these conditions has been previously linked to ASD, our findings 
of a specific association with dyslipidemia in ASD further define an 
emerging dyslipidemia-associated ASD subgroup.

To eliminate potential confounding by drugs commonly pre-
scribed in ASD that are known to alter lipid levels15, we next 
restricted our analyses to individuals with no prescription records 
for atypical antipsychotic, anticonvulsant or antidiabetic drugs. 
Dyslipidemia remained associated with ASD in these individuals. 
For example, dyslipidemia diagnoses were more common in indi-
viduals with ASD, and no atypical antipsychotic, anticonvulsant or 
antidiabetic drug prescriptions compared with individuals without 
ASD and no such prescriptions (OR = 1.73, 95% CI = (1.67, 1.79), 
P = 1.11 × 10−201; Extended Data Fig. 2a,b). Consistently, in an inde-
pendent cohort, abnormal blood lipid profiles were more common 
in individuals with ASD not taking atypical antipsychotics, anti-
convulsants or antidiabetics, compared with individuals with no 
ASD diagnosis and no such drug prescriptions (LDL: OR = 1.48, 
95% CI = (1.27, 1.73), P = 6.16 × 10−7; total cholesterol: OR = 1.77, 
95% CI = (1.36, 2.27), P = 2.00 × 10−5; triglycerides: OR = 1.33, 95% 
CI = (1.10, 1.60), P = 2.99 × 10−3; Extended Data Fig. 2c–h).

Finally, we sought to systematically compare the phenotypes 
of specifically engineered models of dyslipidemia and ASD gene 
dysfunction. We mined the Mouse Genome Informatics database 
and clustered all reported phenotypes of mice with targeted muta-
tions in genes implicated in ASD and dyslipidemia, according to 
the Online Mendelian Inheritance in Man (OMIM) compendium.  
Both hierarchical and k-means clustering of the 1,315 reported 

Fig. 2 | Convergence of ASD-segregating deleterious variation on lipid regulation functions, clinically reflected by an association between altered 
lipid profiles and ASD, and enrichment of dyslipidemia diagnoses in individuals with ASD. a,b, Example of single-gene clusters: LDLR (Fisher’s method, 
two-sided P = 1.68 × 10−5, n = 3,531 individuals) and LPL (Fisher’s method, two-sided P = 2.75 × 10−3, n = 3,531 individuals). a, Pairwise correlation structure 
of neurodevelopmentally co-expressed LDLR and LPL exons. Edges connect exon nodes with an R2 correlation coefficient ≥0.7. b, Sex-differential 
neurodevelopmental expression patterns of the LDLR cluster in the mediodorsal nucleus of the thalamus and striatum. The mean normalized expression 
pattern is shown across neurodevelopmental periods defined in Supplementary Table 3 among 18 males (cyan) and 15 females (red). c, Example 
of a large sex-different co-expression cluster harboring ASD-segregating deleterious variants (Fisher’s method, two-sided P = 1.18 × 10−12, n = 3,531 
individuals), enriched with genes of the ‘Reactome metabolism of lipids and lipoproteins’ pathway. Relationships between pathway genes found to 
carry ASD-segregating deleterious variants and blood LDL, cholesterol and triglycerides are shown. ER, endoplasmic reticulum; VLDL, very-low-density 
lipoprotein; MTMR6, myotubularin-related protein 6; NEU3, neuraminidase 3; SMPD4, sphingomyelin phosphodiesterase 4; UGCG, UDP-glucose 
ceramide glucosyltransferase; OCRL, oculocerebrorenal syndrome of Lowe (OCRL) inositol polyphosphate-5-phosphatase; ACSL4, acyl-CoA synthetase 
long-chain family member 4; MTMR2, myotubularin-related protein 2. Image was prepared using somersault18:24 (www.somersault1824.com) and 
BioRender (BioRender.com). d, Association of altered lipid profiles and ASD among 2,750,021 BCH patients. ORs and 95% CIs are shown by circles and 
horizontal lines, respectively. e, Fasting triglyceride levels stratified on age, sex (horizontally) and metabolic state (vertically), which are all known to affect 
lipid levels. Lab test results from individuals with ASD are shown in cyan and those from stratum-matched controls in red; blue dotted lines represent the 
reference range. Results from individuals with metabolic dysregulation, including obesity, diabetes and metabolic syndrome X, are shown at the bottom. 
Box plots show the median as a thick line and the 25th and 75th percentiles as upper and lower bounds of the box. The whiskers extend to 1.5× IQR from 
the median (Kruskal–Wallis, two-sided P = 1.79 × 10−4, n = 33,056 individuals). f, Enrichment of dyslipidemia diagnoses in individuals with ASD, as detected 
in healthcare claims data from 34,003,107 Americans. A forest plot depicts diagnosis-specific association estimates and their 95% CIs for ASD and 
dyslipidemia as circles and horizontal lines, respectively (overall OR = 1.93, 95% CI = (1.88, 1.99), Fisher’s exact test, two-sided P < 1.00 × 10−323, n = 80,714 
individuals with ASD versus repeatedly resampled matched controls). NOS, not otherwise specified. g, Diagnostic characterization of individuals with 
dyslipidemia-associated ASD versus ASD with no dyslipidemia, based on healthcare claims data (n = 80,714 individuals). The diagnoses enriched in 
individuals with dyslipidemia-associated ASD, their ORs and −log(enrichment P value) are shown.
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phenotypes demonstrated that some ASD mouse models are more 
similar to dyslipidemia mice than to other ASD models (Extended 
Data Fig. 5 and Supplementary Fig. 8). Murine models of dyslip-
idemia have social and nervous system abnormalities, as observed 
in the ASD models, and several ASD mice show lipid homeostasis 

alterations and growth abnormalities characteristic of dyslipidemia 
models (Supplementary Table 2).

In the present study, using massive multimodal data triangula-
tion, we identified a robust nonsyndromic ASD subtype character-
ized by dyslipidemia. This emerging subtype is consistent not only 
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with a rare syndromic form of ASD16,17 but also with the reported 
neuronal functions of bona fide dyslipidemia genes during mam-
malian brain development. For example, lipoprotein lipase (LPL) 
plays a key role during neuronal differentiation18, LDLR is an 
important neuronal signaling mediator19 and proprotein convertase 
subtilisin/kexin type 9 (PCSK9) regulates neuronal apoptosis20. Our 
findings are also consistent with a previous pathway-level analy-
sis of ASD-implicated genes that reported an enrichment of lipid 
metabolism pathways21. Moreover, several studies have shown that 
MeCP2, the dysfunction of which causes Rett syndrome, regulates 
cholesterol metabolism22,23; Rett syndrome, once considered part of 
the autism spectrum, is characterized by overlapping neurodevel-
opmental deficits24. Other studies have demonstrated how lipid dys-
regulation during early prenatal neurodevelopment could lead to 
altered Wnt-dependent migration and proliferation via prostaglan-
din E2 (refs. 25,26), thereby providing a testable mechanism for future 
studies. Notably, the convergence on lipid dysregulation seems to be 
focused on non-fatty acid-related lipids.

The link between ASD and dyslipidemia is exemplified by 
Smith–Lemli–Opitz syndrome (SLOS), a rare syndrome of con-
genital malformations and intellectual disability caused by a cho-
lesterol biosynthesis defect, with 50–88% of cases reported to be in 
individuals on the autism spectrum16,17. Together with pioneering 
reports of dyslipidemia in individuals with ASD27–29, the present 
study supports the existence of a robust dyslipidemia-associated, 
nonsyndromic ASD subtype. In light of their modest effect 
sizes, the potential clinical utility of the association of parental  
dyslipidemia with ASD in the offspring, as well as findings of  
altered blood lipid profiles in infants later diagnosed with ASD, 
should be directly tested by subsequent studies. Our results enable 
the selection of better-defined populations for further research 
and offer rational targets for intervention and prevention. As in 
oncology, where the identification of cancer subtypes enabled the 
development of effective targeted treatments7–9, the identification 
of ASD subtypes is expected to result in similar opportunities for 
therapeutic development. Overall, the work presented in the pres-
ent study represents a proof of concept for the value of using mas-
sive amounts of existing multimodal data to push the boundaries of 
existing knowledge, thereby moving us closer to precision medicine 
for ASD.
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Methods
Neurodevelopmental co-expression analysis. To understand which variants 
might function together during human brain development, we examined exonic 
spatiotemporal co-expression patterns in the BrainSpan RNA-sequencing 
(RNA-seq) data (http://www.brainspan.org/api/v2/well_known_file_
download/267666524). This dataset contains normalized read counts (in RPKM: 
reads per kilobase transcript per million mapped reads) for 309,223 coding and 
noncoding exons measured across 524 samples from 26 brain regions, dissected 
from 23 males and 19 females throughout typical human neurodevelopment 
(Supplementary Tables 1 and 4). These samples create a spatiotemporal profile 
for each exon during typical human neurodevelopment. Co-expression analysis 
based on these profiles can identify exons that might be functionally co-regulated. 
The motivation for focusing on exon-level co-regulation stems from the notion 
that alternative splicing plays a central role during brain development and 
different isoforms of the same gene may exert different functions during human 
neurodevelopment in health and disease30–32.

We first processed the RNA-seq data by treating all 0 values as not available 
(NA) and log2-transforming the RPKM values by using the formula log2(x + 1) to 
reduce the effects of wild points and measurement noise. We then filtered exons 
based on the following exclusion criteria:

	1.	 Variability filter: if there was no change in the expression profile (that is, 
expression levels were the same for different brain areas at different develop-
mental stages from different donors), then the exon was excluded.

	2.	 Multi-sample filter: an exon was excluded if it was present in samples from a 
single donor only.

	3.	 Duplicate filter: some exonic intervals were duplicated in the BrainSpan 
Gencode v.10 RNA-seq data, where duplicates may have been labeled with 
different (and some temporary) names. These were consolidated based on the 
criterion of sharing a genomic interval.

	4.	 Detection filter: we kept those exons with at least 5% non-NA expression 
values.

	5.	 Sample overlap: we also required that candidate pairs 
of exons be detected in 75% of samples or more; that is, 
intersect nna e1ð Þ; nna e2ð Þð Þj j≥75% ´ max nna e1ð Þj j; nna e2ð Þj jð Þ
I

, where nna(e) 
refers to the number of samples for which exon e has non-NA expression 
values, intersect() denotes the operation of set intersection and | | returns the 
length of a vector.

After exon filtration, we identified co-regulated exons by calculating their 
expression correlation across the BrainSpan dataset. We measured the coefficient 
of determination R2 = cor(e1,e2)2, where cor(e1,e2) represents Pearson’s correlation 
between expression profiles of two exons: e1 and e2 (ref. 33). The R2 coefficient 
measures how well e1 might be constructed from e2 (by creating a revised predictor 
of the form α + βe2), and vice versa.

Pairwise correlation calculation across 248,898 exons after filtering amounts 
to over 47 billion pairs and is a daunting task that is intensive in both computation 
and storage. Thus, we adopted a distributed block-wise approach to calculate 
pairwise exon correlations, as shown in Supplementary Fig. 9. By dividing all exons 
into blocks of size 10,000, the correlation calculation was paralleled in a block-wise 
fashion. Let the blocks be b1, …, bn; we then need to compute correlations between 
the exons within b1, correlations between exons in b1 and b2, …, correlations 
between exons in b1 and bn, correlation between exons in b2 and b3 (b2–b1 block 
correlations can be omitted due to symmetry), and so on. Each block-wise 
correlation was dispatched to its own compute node in a 2,000-core computing 
cluster, thereby achieving a 1,000-fold speed up. We used Python 2.7 to generate 
the parallel processing scripts.

Identification of co-regulated exon clusters. The distribution of the coefficients 
of determination R2 across all exon pairs is shown in Supplementary Fig. 10. As 
depicted in Supplementary Fig. 10a, cluster frequency falls at a speed faster than 
exponential as R2 increases. This distribution applies to all exons passing the five 
filters described under Neurodevelopmental co-expression analysis. As the focus 
of our analysis is highly co-expressed exons, we set an empirical criterion that two 
exons must have R2 ≥ 0.7 to be considered co-expressed, thereby focusing on the 
0.02% most correlated exon pairs. We kept all exons that are co-expressed with 
at least one other exon, and represented them as a graph. This graph has exons 
as nodes and draws edges connecting nodes e1 and e2 if R2(e1,e2) ≥ 0.7. Thus, a 
large sparse exon co-expression graph with 92,240 nodes and 6,205,327 edges was 
produced. A small part of this exon graph is shown in Supplementary Fig. 11, 
demonstrating that the whole exon graph consists of smaller exon clusters.

Within the entire exon graph, we identified co-expression clusters by finding 
maximally connected components and their community structures, using the R 
igraph package v.1.2.0 (ref. 34). First, we identified 6,242 distinct co-expressed exon 
clusters with a mean R2 of 0.82 and an averaged exon count of 15. This collection of 
exon clusters is remarkably heterogeneous in size, that is, clusters contain different 
number of exons (Supplementary Table 5) and genes (Supplementary Table 6). 
Although these distributions were skewed toward smaller exon clusters, there were 
numerous exon clusters representing tight multi-gene co-expression. On the other 
hand, one 69,587-exon megacluster arose, calling for finer resolution clustering 

for further module detection. We therefore adopted a second graph-clustering 
algorithm that maximizes the modularity of information flow across clustered 
graph components35. The distribution of cluster sizes and number of genes of the 
additional 3,382 connected exon clusters are shown in Supplementary Tables 7 and 
8, respectively.

Quantifying cluster-level expression throughout neurodevelopment. We next 
tracked the temporal expression profiles of co-regulated exon clusters identified 
in the previous step, across the BrainSpan regions. As defined in Kang et al.30 and 
shown in Supplementary Table 4, the measured brain regions and areas can be 
summarized into six brain structures: amygdaloid complex (AMY), cerebellar 
cortex (CBC), neocortex (NCX), hippocampus (HIP), mediodorsal thalamus (MD) 
and striatum (STR). Based on the mapping in Supplementary Table 4, we derived 
the expression profile for the areas with equations (1)–(8):

FC ¼ mean OFC; DFC; VFC; MFC; M1CjM1C� S1Cð Þð Þ ð1Þ

PC ¼ mean PCx; IPC; S1Cð Þ ð2Þ

TC ¼ mean TCx; ITC; A1C; STCð Þ ð3Þ

OC ¼ mean OCx; V1Cð Þ ð4Þ

NCX ¼ mean FC; PC; TC; OCð Þ ð5Þ

STR ¼ mean STR; MGE; LGE; CGEð Þ ð6Þ

MD ¼ mean MD; DTHð Þ ð7Þ

CBC ¼ mean CBC; CBð Þ ð8Þ

FC, frontal cortex; OFC, orbital prefrontal cortex; DFC, dorsolateral prefrontal 
cortex; VFC, ventrolateral prefrontal cortex; MFC, medial prefrontal cortex; M1C, 
primary motor cortex; PC, parietal cortex; S1C, primary somatosensory cortex; 
IPC, posterior inferior parietal cortex; TC, temporal cortex; A1C, primary auditory 
cortex; STC, posterior superior temporal cortex; ITC, inferior temporal cortex; 
OC, occipital cortex; V1C, primary visual cortex; NCX, neocortex; MGE, medial 
ganglionic eminence; LGE, lateral ganglionic eminence; CGE, caudal ganglionic 
eminence; STR, striatum; DTH, dorsal thalamus; MD, mediodorsal nucleus; CB, 
cerebellum; CBC, cerebellar cortex. Using these equations, we calculated the 
aggregated expressions of all exons, in each brain area across the entire cohort. To 
compare across individuals and brain regions, we first normalized the expression 
levels using a Z transformation (that is, centering the expression vector on the 
mean and dividing by its s.d.). We next tracked the temporal expression patterns in 
each sex using three approaches:

	1.	 LOWESS smoothed line and scatter plot: in this approach, for each exon 
cluster, each brain structure and each sex, we plotted the expression of every 
exon in the cluster from all matching sample donors, with the axes being 
expression and time. We then fit a temporal expression curve across all points 
using locally weighted scatter-plot smoothing (LOWESS)36. We used the 
implementation from R stats package v.4.1.0 with the following parameters: 
span = 0.5, degree = 1.

	2.	 Mean and s.e.m. plot: in this approach, for each exon cluster, each brain 
structure, each sex and each time point, we computed the mean expression 
and its s.e.m. by using the aggregated expressions of all exons in that exon 
cluster, from all matching sample donors. We plot the temporal expression 
profile for each combination of exon cluster, brain area and sex using line 
graph with means as values and the s.e.m. as an error bar at each time point.

	3.	 Mean and s.e.m. period plot: the spatiotemporal dynamics of the human 
brain transcriptome is a staged process and can be tracked as a multi-period 
system, as detailed in Supplementary Table 3. For each exon cluster, each 
brain structure, each sex and each neurodevelopmental period, we computed 
the mean expression level and its s.e.m. by using the aggregated expression of 
all exons in that exon cluster, from all matching sample donors. The temporal 
expression profiles were then similarly plotted as in approach 2.

Identification of sex-different co-regulated exons. To identify sex-different 
co-regulated exons during human brain development, we compared the temporal 
expression profiles of each exon cluster in each brain structure between male and 
female individuals. Following Werling et al.11, we performed differential expression 
analysis using Limma v.3.42.2 (ref. 37), a robust method of linear mixed models 
and Bayesian t-tests for analyzing small cohorts. We used sex as the main contrast 
in the regression models, and included subject as a random effect to account for 
the non-independence of samples from the same individual. As fixed effects in the 
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model, we included age, brain structure, postmortem interval and RNA integrity 
number, as detailed in Kang et al.30. P values were adjusted for multiple testing 
of all clusters using the Benjamini–Hochberg approach38. Supplementary Table 9 
details the results of this analysis.

WES data compilation. We compiled familial WES studies from the NIMH Data 
Archives’ NDAR, as detailed in Supplementary Table 10. The BCH Institutional 
Review Board (IRB) has determined that this research qualifies as exempt from 
the requirements of human subject protection regulations. Supplementary Table 
10 shows the number of included families from each dataset. Inclusion criteria 
were: (1) families with at least two siblings who have a similar degree of sequence 
coverage, as determined by the Genome Analysis Toolkit (GATK) CallableLoci 
analysis39; and (2) families with variant data enabling the performance of variant 
quality score recalibration, offering a tunable sensitivity–specificity tradeoff39. A 
total of 1,754 families met the inclusion criteria and were included in our analysis. 
Of these, 50 were multiplex families with 2–5 affected siblings, and 1,704 were 
simplex families with 1 affected and 1 unaffected full sibling. The total number 
of individuals included in our analysis amounts to 3,531. To accurately and 
consistently call variants across all datasets, we followed the GATK framework39 for 
a standardized preprocessing of WES data into analysis-ready reads, followed by 
joint variant calling.

WES preprocessing. For each individual included in the present study, multiple 
BAM files may have been generated by multiple sequencing runs. Furthermore, 
different studies used different aligners and different variant calling frameworks. 
To standardize variant calling and data analysis across studies, our data 
preprocessing began with converting BAM files back to interleaved fastq files and 
aligning these in a standardized manner using BWA-MEM v.0.7.10 (http://bio-bwa.
sourceforge.net/bwa.shtml). This step ensures that the BAM files are processed in 
the same standard way to improve variant calling accuracy. Before converting a 
BAM file to a fastq file, we first split the BAM files into multiple read groups. We 
then used Picard v.1.119 (http://broadinstitute.github.io/picard) to undo possible 
post-alignment processing for each split BAM file, using the RevertSAM utility. 
The actual conversion from BAM files to fastq files included the following two 
substeps: the first used the ‘bamshuf ’ utility from Samtools v.1.1 (https://github.
com/samtools/samtools) to shuffle the reads in the BAM file for them not to be in 
any biased order, so that subsequent alignment could correctly estimate the insert 
size using blocks of paired reads. The second substep used the ‘bam2fq’ utility 
from Samtools to convert the BAM file to an interleaved fastq file, where each 
pair of reads (forward and reverse reads) is in the same file. The interleaved fastq 
files from all individuals were then mapped to a single human reference genome 
(GRCh37/hg19, including decoy contigs) using BWA-MEM. The newly aligned 
BAM files containing different read groups were then merged using the Picard 
MergeSamFiles utility. For the merged BAM file, duplicates were marked and 
removed using the Picard MarkDuplicates utility, and read group information was 
added using the Picard AddOrReplaceReadGroups utility.

For efficiency, we restricted variant calling to a limited set of chromosomal 
regions specified by the BrainSpan exon intervals. This is because we are interested 
only in neurodevelopmentally co-regulated variants in the present study. We padded 
each BrainSpan exon with a 100-basepair (bp) buffer. We sorted the padded intervals 
and divided them into two collections based on whether they are on the forward or 
the reverse strands. We then merged intervals overlapping with other intervals in the 
same collection to provide a nonoverlapping collection of intervals on each strand. 
The union of the two collections of merged intervals then formed the BrainSpan 
reference interval. Supplementary Fig. 12 shows the size distribution of padded 
merged BrainSpan intervals. This figure also categorizes the intervals based on 
their strands (forward or reverse), and depicts the distributions of those intervals 
respectively, which are similar to each other and similar to that of all intervals.

Joint variant calling in BrainSpan intervals. After preprocessing, we 
performed joint variant calling using the GATK v.3.3 (ref. 39) in the padded 
BrainSpan intervals. The preprocessed BAM files underwent local realignment, 
which transformed regions with misalignments due to indels into clean reads 
with a consensus indel model, using the GATK RealignerTargetCreator and 
IndelRealigner utilities. The base quality scores were then recalibrated to correct 
for artifact and offset bias, using the GATK BaseRecalibrator utility, producing 
analysis-ready reads.

The analysis-ready reads were then processed using the GATK Haplotype 
Caller. This step simultaneously calls SNPs and indels using local reassembly 
of haplotypes in an active region, resulting in per-position genotype likelihood. 
We used the human reference genome GRCh37/hg19 including decoy contigs 
as reference for the Haplotype Caller, using the recommended setting for 
single-sample all-sites calling on DNA-seq: emitRefConfidence = GVCF, variant_
index_type = LINEAR, variant_index_parameter = 128000.

We then combined the resulting per-sample variants and performed joint 
genotyping step using the GATK’s GenotypeGVCFs utility. Joint genotyping 
aggregated multi-sample variants and merged the records to re-estimate the 
genotype likelihood by combining all records spanning the target location. Based 
on our joint genotyping results, we applied a variant quality score recalibration, a 

machine-learning-based, variant-filtering step. SNPs and indels were recalibrated 
separately in two passes. The first pass recalibrated SNPs, with indels left untouched; 
the second pass recalibrated indels, with recalibrated SNPs left untouched.

We applied the WES preprocessing and joint variant calling steps to samples 
from the multiplex family cohort. For the discordant family cohort, we used a 
subset of the dataset produced by Krumm et al.40, which is based on a similar 
GATK pipeline. There are two main differences between the pipelines by Krumm 
et al.40 and our pipeline: (1) Krumm et al. performed joint variant calling separately 
for each quad (parents, proband and unaffected sibling) instead of the entire 
cohort; (2) Krumm et al. called variants within 20 bp of the NimbleGen EZ-SeqCap 
v.2.0 targets rather than within 100 bp of BrainSpan interval targets. The first 
difference may introduce some bias when directly comparing called samples from 
the two cohorts. However, we performed segregation analysis separately on the 
two cohorts, thus avoiding such bias. The second difference resulted in disparate 
numbers of variants per individual between the two cohorts. However, as detailed 
below and depicted in Supplementary Figs. 13 and 14, our subsequent filtering 
steps (mapping to BrainSpan exon clusters in particular) made the total number of 
variants per individual comparable between the two cohorts. Finally, we retained 
only those variants with the most confident genotype assignments, as quantified by 
the GATK’s genotype quality (GQ) score, requiring GQ = 99.

Annotation-based variant filtering and deleterious variant detection. We 
next used ANNOVAR v.2018Apr16 (https://annovar.openbioinformatics.org) 
to comprehensively annotate called variants with a wide array of information. 
Annotations included the host gene (using several gene models such as RefSeq, 
UCSC Known Gene and Gencode), variant function and minor allele frequency 
among various populations as determined by gnomAD, and phenotype 
associations according to ClinVar and HGMD. To address issues of reference 
misannotation, we filtered out variants with minor allele frequency >90% among 
the 125,748 individual exomes aggregated by gnomAD v.2.1 (https://gnomad.
broadinstitute.org). We further focused on likely gene disruptive (LGD) variants, 
which include frame-shift insertions, frame-shift deletions, nonsense variants and 
splice-site mutations.

Segregation pattern analysis in families discordant for ASD. Simplex families 
in this study refer to those that have one child diagnosed with ASD. We focused 
on discordant families, a special case of simplex families that have two siblings: 
one proband (affected with ASD) and one unaffected sibling. In each discordant 
family, discordant sibling pairs were formed by pairing a proband with his or her 
own unaffected sibling. With the collection of discordant pairs, we compared 
neurodevelopmentally co-regulated LGD variants found in the proband with 
those carried by the unaffected sibling, in each exon cluster. We used permutation 
tests41 to assess the statistical significance of an exon cluster’s excess deleterious 
variation in probands compared with their unaffected siblings. Treating each 
family as rows and probands and sibling as columns, we filled the entries of this 
matrix with the total number of variants detected in each individual in each exon 
cluster. This created an exon cluster mutational profile among discordant families. 
To obtain an empirical P value for excess mutational burden, we randomly shuffled 
paired probands and siblings. Repeating the permutation created a distribution of 
mutational profiles that simulates exon cluster LGD variants by chance. With this 
simulated distribution, we then calculated the P value of differential variation (that 
is, 

P
i

me
pi
�me

si

 

I

, where e indexes the exon clusters, i indexes discordant families, 
and pi and si are the proband and unaffected sibling in the ith family, respectively).

Segregation pattern analysis in multiplex families. Multiplex families have 
two or more affected probands. In this segregation analysis we searched for 
neurodevelopmentally co-regulated LGD variants that are shared among all 
affected siblings. Although most multiplex families have two affected siblings, 
there were 16 families with 3–5 affected siblings. We used ASP analysis42 to assess 
the significance of variant sharing among all proband siblings. We followed an 
extended version of the ASP test42. The null hypothesis of this test is that variant 
sharing is by chance, and therefore not related to the phenotype. This hypothesis 
was tested using the nonparametric linkage z-score. To deal with multiplex families 
of more than two sibs, we divided each family into sib pairs (that is, a family with s 
sibs would result in s × (s − 1)/2 affected sib pairs). Although the artificially created 
pairs are dependent, we did not scale them down by s/2, as if there were only s − 1 
pairs in the sibship. This was done to retain optimal power because most of the 
multiplex families had four or fewer sibs (only two families had five sibs)42.

Mapping variants onto co-regulated exon clusters. To identify 
neurodevelopmentally co-regulated LGD variants, we next mapped the identified 
LGD variants to the discovered exon clusters. In doing so we first performed an 
interval search to map variants into exons using the GenomicRanges toolkit43. 
A variant was mapped into an exon if it overlapped the exon’s genomic interval. 
This mapping of LGD variants to exon clusters allowed us to aggregate deleterious 
mutations in each co-regulated exon cluster, thereby reducing the complexity of the 
problem by several orders of magnitude. Supplementary Figs. 13 and 14 show the 
distributions of the number of variants per individual at each stage of the analysis, 
for the discordant family cohort and the multiplex family cohort, respectively. 
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From Supplementary Fig. 13, it can easily be seen that the steps of restricting to 
LGD variants—restricting variants to co-regulated exon clusters and filtering for 
differentially variable variants—all contribute to the reduction in the number of 
candidate variants. Similar reduction holds for multiplex families, where the last 
filtering step is based on shared variants among all proband siblings, as shown in 
Supplementary Fig. 14.

Integrated statistical significance. As detailed in “Segregation pattern analysis 
in families discordant for ASD” and “Segregation pattern analysis in multiplex 
families”, in simplex families we calculated P values for the statistical significance 
of excess LGD variation in probands compared with their unaffected sibs in each 
neurodevelopmentally co-regulated exon cluster. In multiplex families, we calculated 
P values for increased deleterious allele sharing among all affected sibs for each cluster. 
In this step, we combined the two sources of association evidence using Fisher’s 
method44. As the analytical focus was at the cluster level, the combined P values were 
then Bonferroni corrected for multiple testing of all clusters45. Supplementary Table 11 
details the composition of the resulting 33 significant clusters.

Functional enrichment analysis. To assess the function of single gene exon 
clusters, we used the National Center for Biotechnology Information’s gene2go 
table (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz) to map genes to their 
molecular function, biological process and cellular compartment. For multi-gene 
exon clusters we used GSEA v.4.0.3 (ref. 46) to identify gene membership in 
Kyoto Encyclopedia of Genes and Genomes pathways (http://www.genome.
jp/kegg), Reactome pathways (http://www.reactome.org), BioCarta pathways 
(http://www.biocarta.com) and their pathway interactions, as recorded in 
the Pathway Interaction Database (https://wiki.nci.nih.gov/pages/viewpage.
action?pageId=315491760). SFARI Gene, an integrated catalog of human genetic 
studies related to autism, was used to examine the significant cluster genes’ known 
association with ASD (https://gene.sfari.org). Only genes belonging to evidence 
categories S, 1 and 2, were considered as having a strong prior for playing a 
role in ASD. Furthermore, ClinVar (https://www.ncbi.nlm.nih.gov/clinvar) and 
OMIM (https://www.omim.org) were mined in search of significant cluster genes’ 
implication in schizophrenia and bipolar disorder, two related neurodevelopmental 
disorders with etiologies that overlap with those of ASD4.

Affinity clustering and reanalysis. To ensure the reproducibility of our genomic 
analyses we repeated exon clustering with another clustering approach, affinity 
clustering47. We used affinity clustering to generate medium, more uniformly 
sized, connected exon clusters. To construct an affinity network using distance as 
edge weights, we converted the R2 score between exons to the distance between 
exons using the following preprocessing steps. We first normalized the R2 score of 
an edge, dividing it by the product of the square roots of degrees of its two nodes. 
We then used 1 minus the normalized R2 score as distance. As affinity clustering 
requires only relative order of distances and is otherwise agnostic to absolute 
distance values, we needed only to ensure that the converted distance is ≥0. With 
the above preprocessing done, we obtained 491 moderately sized connected 
exon clusters, the sizes of which are more evenly distributed (number of exons 
per cluster: median 76, interquartile range (IQR) (38, 159); number of genes per 
cluster: median 19, IQR (7, 56)). Supplementary Table 12 details significant exon 
clusters identified with affinity clustering, demonstrating the similarity to the 
original results in terms of their identified molecular themes.

Analysis of blood lipid profiles among BCH patients. We used the i2b2/
tranSMART platform v.1.7.09 (ref. 48) to analyze EHR data from 2,750,021 individuals 
seen at BCH, including 25,514 children with ASD. The BCH IRB has determined that 
this research qualifies as exempt from the requirements of human subject protection 
regulations; i2b2/tranSMART enables the cohesive analysis of heterogeneous 
phenotypic data, including longitudinal diagnoses and lab results. Using this engine, 
we compared the results of common lipid lab tests in individuals with ASD and 
matched individuals with no ASD-related diagnoses. Tests included triglyceride levels, 
total cholesterol and LDL. For each lab, a 2 × 2 contingency table was constructed 
to compare the association of abnormal lab results with ASD, as indicated by the 
presence of one or more International Classification of Diseases, 9th revision (ICD-
9) codes in the 299 group/ICD-10 codes in the F84 group (pervasive developmental 
disorders) in at least one record49,50. Fisher’s exact tests were used to assess the 
statistical significance of the association of abnormal lipid lab results and ASD.

We also compared actual blood lipid levels between individuals with ASD 
and age, sex and metabolic state-matched controls. For this purpose, an altered 
metabolic state was defined by the presence of one or more obesity, diabetes or 
metabolic syndrome X diagnoses. We extracted all diagnoses and demographics 
of de-identified BCH patients with at least one lipid test result of interest and at 
least 2 years of coverage (n = 103,484). For each blood test, comparisons were made 
across strata using a generalized linear model.

Analysis of healthcare claims data. We analyzed 4 calendar years’ (2010–2013) 
worth of medical claims and enrollment demographics for 34,003,107 Americans 
who were covered by Aetna Inc. healthcare during that period. The Harvard 
Medical School IRB has determined that this research qualifies as exempt 

from the requirements of human subject protection regulations. We used the 
subscriber-to-member relationships in the insurance claims data to identify 
38,846 families with at least one child diagnosed with ASD, indicated by the 
presence of one or more ICD-9 codes in the 299 group (pervasive developmental 
disorders) in at least one medical claim. Fathers, mothers and their affected 
children were matched to control populations by age, sex and zipcode, as a proxy to 
socioeconomic status. The large control populations were repeatedly subsampled 
(n = 10,000) to compare the prevalence of comorbid diagnoses in equally sized 
samples, and the P value of the median statistic for each diagnostic category was 
taken as the representative association between that diagnostic group and the case 
population. In addition to case–control comparisons, we also identified 23,837 
families with at least one child diagnosed with ASD (ICD-9 code 299.x) and at least 
one child lacking any 299.x diagnosis.

ICD-9 codes were rolled up to phenome-wide association study (PheWAS) 
groups51, and dyslipidemia was defined as having any of the following diagnoses: 
hyperlipidemia (PheWAS code (PheCode) 272.1), mixed hyperlipidemia (PheCode 
272.13), hypercholesterolemia (PheCode 272.11), lipoid metabolism disorder not 
otherwise specified (PheCode 272.9), lipoprotein disorders (PheCode 277.51), 
other disorders of lipoid metabolism and hyperalimentation (PheCode 277.5), and 
disorders of lipoid metabolism (PheCode 272). Fisher’s exact tests were used to 
assess the strength and significance of all diagnostic associations.

We further assessed dyslipidemia diagnoses, defined as above, in parents of at 
least one child with ASD, compared with age- and sex-matched parents of children 
not diagnosed with ASD. Comparisons were performed using Fisher’s exact tests.

We also compared drug prescription records and comorbid diagnoses between 
individuals with ASD and dyslipidemia, and individuals with ASD and no 
dyslipidemia, identified as described above. The National Drug Code directory 
was used to map National Drug Codes to established pharmacological classes and 
physiological effects, thereby identifying prescriptions of atypical antipsychotic, 
antiepileptic, antidiabetic (including gliptins, glitazones, biguanides, sulfonylureas, 
glinides, α-glucosidase inhibitors, glucagon-like peptide-1 agonists, sodium–
glucose transport protein 2 inhibitors, insulin analogs and amylin analogs) and 
lipid-lowering drugs (including statins, cholesterol absorption inhibitors and 
peroxisome proliferator-activated receptor α agonists). Data were stored on 
SQL Server 2017 on Windows Server 2012 R2 Datacenter and accessed through 
Microsoft R Open v.3.3.3. The PheWAS R package v.0.12 was used to map ICD-9 
codes to PheCodes as described in Analysis of healthcare claims data above.  
In all, 6,621,118 individuals with ASD and/or dyslipidemia had sufficient data, 
which were comparatively analyzed using age- and sex-adjusted, generalized  
linear models.

Confounder analyses. We examined whether IQ or sex might be related to LGD 
variants in lipid metabolism genes in individuals with ASD. First, we examined the 
relationships between IQ and the number of deleterious alleles in lipid metabolism 
genes (Supplementary Fig. 2). We found no differences in IQ between individuals 
in the bottom and top deciles of the number of LGD variants in lipid metabolism 
genes (the mean IQ of individuals with ASD in the bottom decile of deleterious 
variants in lipid metabolism genes was 79.63, the mean IQ of individuals with 
ASD in the top decile was 81.60, and the 95% CI of the difference of the means was 
(−6.64, 2.7), Student’s t-test, P = 0.41). Similarly, we compared the relationships 
between IQ and the number of lipid-metabolism genes hit by one or more LGD 
variants (Supplementary Fig. 3). Consistent with the previous result, we found no 
differences in IQ between individuals in the bottom and top deciles of the number 
of lipid metabolism genes with LGD alleles (the mean IQ of individuals with ASD 
in the bottom decile was 79.55, the mean IQ of individuals with ASD in the top 
decile was 80.62 and the 95% CI of the difference of the means was (−5.98, 3.85), 
Student’s t-test, P = 0.67). We then examined the sex distributions according to 
the number of LGD variants in lipid metabolism genes (Supplementary Fig. 4), 
as well as the number of lipid metabolism genes hit by one or more LGD variants 
(Supplementary Fig. 5). We found no sex differences between individuals in the 
bottom and top deciles of the number of LGD alleles in lipid metabolism genes 
(85.9% males in the bottom decile versus 86.2% in the top decile; OR = 0.967, 95% 
CI = (0.58, 1.59), Fisher’s P = 0.97). Similarly, no sex bias was detected between 
individuals in the bottom and top deciles of the number of lipid metabolism genes 
hit by one or more LGD variants (89.7% males in the bottom decile versus 86.9% 
males in the top decile; OR = 1.31, 95% CI = (0.73, 2.42), Fisher’s P = 0.41).

Furthermore, we used the healthcare claims data to examine relationships 
between dyslipidemia and exposure to commonly prescribed drugs in ASD that 
are thought to alter lipid levels. For this purpose, we used data from 6,621,118 
individuals with ASD and/or dyslipidemia and at least 2 years of coverage. We 
repeated the analyses described above on the subpopulation of individuals with no 
record of atypical antipsychotic, anticonvulsant or antidiabetic drug prescriptions.

Similarly, we stratified the BCH EHR data on drug use, and compared 
blood lipid profiles among individuals with no prescription records for atypical 
antipsychotics, anticonvulsants or antidiabetics. We further stratified these data on 
metabolic state, and found that, among individuals with metabolic dysregulation, 
defined as a record of diabetes, obesity and/or metabolic syndrome X diagnoses, 
lipid profiles were significantly different in those with comorbid ASD (Fig. 2e and 
Supplementary Figs. 6 and 7).
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Analysis of mouse phenotypes. To examine the functional overlap between ASD 
and dyslipidemia genes we compared all reported phenotypes of mouse models 
with targeted mutations in bona fide ASD and dyslipidemia genes. We also included 
models of SLOS as a gold standard intermediate, because SLOS is a rare syndrome 
of congenital malformations and intellectual disability caused by a cholesterol 
biosynthesis defect, with most cases meeting the diagnostic criteria for ASD16.

We focused only on genes annotated by the authoritative OMIM compendium 
(https://www.omim.org) as ASD, dyslipidemia or SLOS genes. Their mapping 
to mouse genes was obtained from http://www.informatics.jax.org/downloads/
reports/MGI_GeneOMIM.rpt. In all, we identified 34 ASD genes, 10 dyslipidemia 
genes and 1 SLOS gene implicated in the respective conditions by OMIM and 
modeled by at least one mouse. We next obtained the phenotypes of all mouse 
models with targeted mutations in these genes, using http://www.informatics.
jax.org/downloads/reports/MGI_GenePheno.rpt, and mapped phenotype IDs to 
their descriptions using http://www.informatics.jax.org/downloads/reports/VOC_
MammalianPhenotype.rpt. For each modeled gene, a phenotype was considered 
present if at least one mouse model of a targeted disruption to that gene had the 
phenotype reported in at least one publication. The results are summarized in a 
Boolean matrix in Supplementary Table 2. This matrix was clustered to understand 
the overall phenotypic similarities between ASD and dyslipidemia gene disruptions 
in an unsupervised manner. Both hierarchical and k-means clustering were used. 
For hierarchical clustering, dendextend v.1.13.4 and circlize v.0.4.9 were used in 
RStudio v.1.3.959 (https://cran.r-project.org/web/packages/dendextend/index.
html and https://cran.r-project.org/web/packages/circlize/index.html, respectively). 
In addition, factoextra v.1.0.7 (https://cran.r-project.org/web/packages/
factoextra/index.html) was used for k-means clustering and principal component 
analysis-based visualizations.

Statistical analysis. ASP analysis42 was used to assess the significance of multiplex 
family variant sharing, and permutation tests41 were used to assess the increased 
burden of neurodevelopmentally co-regulated, sex-differentially expressed LGD 
variation in probands compared with their unaffected siblings. These sources 
of evidence were combined using Fisher’s method44. Limma37 was used for 
sex-differential expression analysis. GSEA46 was used for functional enrichment 
analysis. Student’s t-tests were used to compare the number of LGD mutations in 
lipid-related genes with IQ and age, and Fisher’s exact test was used to examine 
the association between LGD mutations in lipid-related genes and sex. Fisher’s 
exact tests were further used to examine the association between ASD and altered 
lipid profiles, as well as the association between ASD and dyslipidemia diagnoses. 
Kruskal–Wallis tests were used to compare fasting triglycerides, total cholesterol 
and LDL-cholesterol in individuals with ASD and age-, gender- and metabolic 
state-matched controls. Generalized linear models were used to examine comorbid 
diagnoses in dyslipidemia-associated ASD, while controlling for age and sex.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Familial WES datasets can be obtained from https://ndar.nih.gov as Collections 
1918, 2004 and 2042. The human neurodevelopmental transcriptome 
dataset is available at http://www.brainspan.org/api/v2/well_known_file_
download/267666524. Functional annotations can be obtained from ftp://ftp.ncbi.
nlm.nih.gov/gene/DATA/gene2go.gz and https://www.gsea-msigdb.org/gsea/
downloads.jsp. EHRs and healthcare claims data used in the present study are not 
publicly available due to patient privacy concerns. Mouse phenotypes are available 
at http://www.informatics.jax.org/downloads/reports/MGI_GenePheno.rpt.

Code availability
The code used in the present study is available at https://github.com/yuanluo/
autism_precision_medicine.
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Extended Data Fig. 1 | Data modalities integrated in the present study.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Association between ASD and dyslipidemia, stratified by drug use. In addition to examining the relation between ASD and 
dyslipidemia in the entire cohorts, we also restricted our analyses to individuals with no prescription records of drugs commonly prescribed in ASD which 
are known to alter lipid levels, namely atypical antipsychotics, anticonvulsants, and antidiabetics. Error bars indicate the 95% CIs for the proportions.  
a, Rates of dyslipidemia diagnoses in individuals with ASD (red) and individuals with no ASD diagnosis (cyan), stratified by drug use (entire cohort OR = 
1.93, 95% CI = (1.88, 1.99), Fisher’s exact two-sided P < 1 × 10−323, n = 6,621,118 individuals; individuals not taking atypical antipsychotics, anticonvulsants, 
or antidiabetics OR = 1.73, 95% CI = (1.67, 1.79), Fisher’s exact two-sided P = 1.11 × 10−201, n = 6,488,315). b, Rates of ASD diagnoses in individuals 
with dyslipidemia (red) and individuals with no dyslipidemia diagnosis (cyan), stratified by drug use (effect sizes as in a). c, Fraction of individuals with 
abnormal fasting LDL levels out of individuals with ASD and at least one fasting LDL test result (red), and individuals with no ASD diagnosis and at 
least one fasting LDL test result (cyan), stratified by drug use (entire cohort OR = 1.48, 95% CI = (1.36, 1.61), Fisher’s exact two-sided P = 1.06 × 10−20, 
n = 48,775 individuals; individuals not taking atypical antipsychotics, anticonvulsants, or antidiabetics OR = 1.48, 95% CI = (1.27, 1.73), Fisher’s exact 
two-sided P = 6.16 × 10−7, n = 34,751 individuals). d, Fraction of individuals with ASD out of individuals with abnormal fasting LDL (red), and individuals 
with all fasting LDL test results within the reference range (cyan), stratified by drug use (effect sizes as in c). e-f, Same as c-d but for fasting total 
cholesterol (TC). Entire cohort OR = 1.69, 95% CI = (1.49, 1.92), Fisher’s exact two-sided P = 7.14 × 10−15, n = 43,650 individuals; individuals not taking 
atypical antipsychotics, anticonvulsants, or antidiabetics OR = 1.77, 95% CI = (1.36, 2.27), Fisher’s exact two-sided P = 2.00 × 10−5, n = 31,690 individuals. 
g-h, Same as c-d but for fasting triglycerides (TG). Entire cohort OR = 1.33, 95% CI = (1.20, 1.46), Fisher’s exact two-sided P = 1 .73 × 10−8, n = 47,650 
individuals; individuals not taking atypical antipsychotics, anticonvulsants, or antidiabetics OR = 1.33, 95% CI = (1.10, 1.60), Fisher’s exact two-sided  
P = 2.99 × 10−3, n = 39,165 individuals.
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Extended Data Fig. 3 | Enrichment of dyslipidemia diagnoses in parents of children with ASD (maternal OR = 1.16, 95% CI = (1.12, 1.20), Fisher’s exact 
two-sided P = 5.28 × 10−18; paternal OR = 1.13, 95% CI = (1.09, 1.16), Fisher’s exact two-sided P = 1.92 × 10−14; n = 38,846 families vs. repeatedly 
resampled matched controls from a total of 34,003,107 individuals). a, Association between maternal dyslipidemia and having a child with ASD. Shown 
is a forest plot detailing diagnosis-specific ORs by circles and their 95% CIs by horizontal lines. b, Association between paternal dyslipidemia and having a 
child with ASD. A diagnosis-specific forest plot is shown as in (a).
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Extended Data Fig. 4 | Core ASD-related features associated with dyslipidemia in ASD. A forest plot depicts the association estimates for ASD-related 

clinical characteristics more common in individuals with ASD and dyslipidemia, as compared to individuals with ASD and no dyslipidemia (n = 80,714 

individuals). ORs and their 95% CIs are shown by circles and horizontal lines, respectively.
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Extended Data Fig. 5 | Phenotypic clustering of ASD (blue), dyslipidemia (orange), and SLOS (red) mouse models. Hierarchical clustering of 1,315 
phenotypes measured in ASD (n = 34), dyslipidemia (n = 10), and SLOS (n = 1) mouse models identified four clusters. Three clusters (shown on top) 
include both dyslipidemia and ASD mice, with shared phenotypes such as seizures, abnormal synapse morphology, abnormal learning, abnormal brain 
size, and abnormal coordination. The fourth cluster (bottom) is ASD-specific. Thus, some ASD models are more similar to dyslipidemia models than to 
other ASD mice.
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Familial whole exome sequence data can be obtained from https://ndar.nih.gov as Collections 1918, 2004, and 2042. The human neurodevelopmental 
transcriptome dataset is available at http://www.brainspan.org/api/v2/well_known_file_download/267666524. Functional annotations can be obtained from ftp://
ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz and https://www.gsea-msigdb.org/gsea/downloads.jsp. Electronic health records and healthcare claims data used in 
this study are not publicly available due to patient privacy concerns. Mouse phenotypes are available at http://www.informatics.jax.org/downloads/reports/
MGI_GenePheno.rpt
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Sample size No sample size calculations were performed, rather all available data was used. Post hoc power calculations showed that all analyses achieved 
power > 0.95.

Data exclusions All data exclusion criteria were predetermined. In the familial whole exome data, siblings with significantly different sequence coverage were 
excluded, as determined by the GATK CallableLoci analysis. This was intended to avoid confounding by differential sequence coverage. In the 
healthcare claims and medical records data, individuals with duration of coverage spanning < 24 months were excluded. The rationale behind  
this was to ensure the availability of sufficient time for the detection of associated diagnoses or lab test results. 

Replication Two attempts at replication were successful, using orthogonal data types and multiple approaches. The reproducibility of our study was 
further enhanced by bootstrapping all the association tests performed in massive healthcare claims data 10,000 times.

Randomization Mendelian randomization was the basis of the familial whole exome sequence analyses conducted. For other data types, individuals and 
samples were matched to optimally control for covariates, based on data availability. Specifically, in the transcriptomic data analysis, samples 
were matched based on brain region, age, sex, RNA integrity number (RIN), and postmortem interval (PMI). In the healthcare claims data, 
individuals were matched based on age, sex, duration of coverage, and zipcode as a proxy for socioeconomic status and access to care. In the 
institutional health records data, individuals were matched based on age, sex, availability of test results, drug use, and metabolic status.

Blinding Blinding was not relevant to this study as it was based on population-level summary statistics.
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