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Explainable artificial intelligence model to predict
acute critical illness from electronic health records
Simon Meyer Lauritsen 1,2✉, Mads Kristensen1, Mathias Vassard Olsen3, Morten Skaarup Larsen3,

Katrine Meyer Lauritsen 2,4, Marianne Johansson Jørgensen5, Jeppe Lange2,5 & Bo Thiesson1,6

Acute critical illness is often preceded by deterioration of routinely measured clinical para-

meters, e.g., blood pressure and heart rate. Early clinical prediction is typically based on

manually calculated screening metrics that simply weigh these parameters, such as early

warning scores (EWS). The predictive performance of EWSs yields a tradeoff between

sensitivity and specificity that can lead to negative outcomes for the patient. Previous work

on electronic health records (EHR) trained artificial intelligence (AI) systems offers promising

results with high levels of predictive performance in relation to the early, real-time prediction

of acute critical illness. However, without insight into the complex decisions by such system,

clinical translation is hindered. Here, we present an explainable AI early warning score (xAI-

EWS) system for early detection of acute critical illness. xAI-EWS potentiates clinical

translation by accompanying a prediction with information on the EHR data explaining it.

https://doi.org/10.1038/s41467-020-17431-x OPEN

1 Enversion A/S, Fiskerivej 12, 1st floor, 8000 Aarhus C, Denmark. 2 Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82,
8200 Aarhus N, Denmark. 3 Department of Biomedical Engineering and Informatics, Aalborg University, Niels Jernes Vej 12, 9220 Aalborg Ø, Denmark.
4 Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard, 99, 8200 Aarhus N, Denmark. 5 Department
of Research, Horsens Regional Hospital, Sundvej 30, 8700 Horsens, Denmark. 6 Department of Engineering, Aarhus University, Inge Lehmanns Gade 10,
8000 Aarhus C, Denmark. ✉email: sla@enversion.dk

NATURE COMMUNICATIONS |         (2020) 11:3852 | https://doi.org/10.1038/s41467-020-17431-x | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17431-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17431-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17431-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17431-x&domain=pdf
http://orcid.org/0000-0001-8823-5047
http://orcid.org/0000-0001-8823-5047
http://orcid.org/0000-0001-8823-5047
http://orcid.org/0000-0001-8823-5047
http://orcid.org/0000-0001-8823-5047
http://orcid.org/0000-0002-6230-6430
http://orcid.org/0000-0002-6230-6430
http://orcid.org/0000-0002-6230-6430
http://orcid.org/0000-0002-6230-6430
http://orcid.org/0000-0002-6230-6430
mailto:sla@enversion.dk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Artificial Intelligence (AI) is capable of predicting acute
critical illness earlier and with greater accuracy than tra-
ditional early warning score (EWS) systems, such as

modified EWSs (MEWSs) and sequential organ failure assess-
ment scores (SOFAs)1–13. Unfortunately, standard deep learning
(DL) that comprise available AI models are black-box predictions
that cannot readily be explained to clinicians. A tradeoff must,
therefore, be made between transparency and predictive power,
which for high-stake applications most often favor the simpler,
more transparent systems, where a clinician can easily back-trace
a prediction. To benefit from the higher predictive power, the
importance of explainable and transparent DL algorithms in
clinical medicine is without question, as was recently highlighted
in the Nature Medicine review by Topol14.

Transparency and explainability are an absolute necessity for the
widespread introduction of AI models into clinical practice, because
an incorrect prediction may have grave consequences15–18. Clin-
icians must be able to understand the underlying reasoning of AI
models so they can trust the predictions and be able to identify
individual cases in which an AI model potentially gives incorrect
predictions15–19. Consequently, a useful explanation involves both
the ability to account for the relevant parts in an AI model leading
to a prediction, but also the ability to present this relevance in a way
that supports the clinicians causal understanding in a compre-
hendible way20. An explanation that is too hard to perceive and
comprehend will most likely not have any practical effect.

In this work, we will present explainable AI early warning score
(xAI-EWS), which comprises a robust and accurate AI model for
predicting acute critical illness from electronic health records
(EHRs). Importantly, xAI-EWS was designed to provide simple
visual explanations for the given predictions. To demonstrate the
general clinical relevance of the xAI-EWS, we present results here
from three emergency medicine cases: sepsis, acute kidney injury
(AKI), and acute lung injury (ALI). The xAI-EWS is composed of
a temporal convolutional network (TCN)21,22 prediction module
and a deep Taylor decomposition (DTD)23–27 explanation
module, tailored to temporal explanations (see Fig. 1).

The architecture of the TCN has proven to be particularly
effective at predicting events that have a temporal component,
such as the development of critical illness5,22,28,29. The TCN
operates sequentially over individual EHRs and outputs predic-
tions in the range of 0–100%, where the predicted risk should be

higher for those patients at risk of later acute critical illness,
compared to those who are not. The DTD explanation module
delineates the TCN predictions in terms of input variables by
producing a decomposition of the TCN output on the input
variables30,31.

Results
Predictive performance. In Fig. 2, the predictive power of the
xAI-EWS is presented in summary form with results from the
onset time to 24 h before onset. Area under the receiver operating
characteristic curve (AUROC) with mean values and 95% con-
fidence intervals (CIs) over the five cross-validations folds were
0.92 (0.9–0.95)–0.8 (0.78–83), 0.88 (0.86–0.9)–0.79 (0.78–0.8),
and 0.90 (0.89–0.92)–0.84 (0.82–0.85) for sepsis, AKI, and ALI,
respectively. Area under the precision-recall curve (AUPRC) with
mean values and 95% CIs were 0.43 (0.36–0.51)–0.08 (0.07-0.09),
0.22 (0.19–0.24)−0.13 (0.12–0.14), and 0.23 (0.21–0.26)–0.23
(0.22–0.24) for sepsis, AKI, and ALI, respectively. (Supplemen-
tary Tables 1 and 2).

Explanations. The xAI-EWS enabled two perspectives on the
model explanations: an individual and a population-based per-
spective. For the individual perspective, the explanation module
enabled the xAI-EWS to pinpoint which clinical parameters at a
given point in time were relevant for a given prediction. In cur-
rent clinical practice, the workflow normally follows that clin-
icians observe either a high EWS or an increase in EWS.
However, the following targeted clinical intervention concerning
the potential critical illness happens when the clinician under-
stands which clinical parameters have caused the high EWS or the
change in EWS. This is one of the main reasons why AI-based
EWS systems need to be able to explain their predictions. The
xAI-EWS system we developed allows for such explanations in
real time and across all clinical parameters used in the model. An
example of an output from the explanation module, utilizing the
individual perspective, is illustrated in Fig. 3. Individual clinical
parameters are sized according to the amount of back-propagated
relevance. Figure 3a shows the 10 most relevant parameters with
respect to sepsis for a single patient with a risk score of 76.2%.
High respiration frequency, high pulse rate, and low plasma
albumin are the most important predictors of sepsis. The
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Fig. 1 Overview of the xAI-EWS system. Each patient’s data from the EHR is used as input in the TCN prediction module. Based on this data, the model
makes a prediction, such as a 78% risk of AKI. The DTD explanation module then explains the TCN predictions in terms of input variables. P, plasma; eGFR,
estimated Glomerular filtration rate; DTD, deep Taylor decomposition; TCN, temporal convolutional network; xAI-EWS, explainable artificial intelligence
early warning system.
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Fig. 2 Predictive performance of the xAI-EWS. The xAI-EWS results are compared with those from MEWS, SOFA, and the gradient boosting vital sign
model (GB-Vital). Predictive performance is shown from the onset time to 24 h before onset. AUROC performance is shown for sepsis (a), AKI (c), and ALI
(e), and AUPRC performance is shown for sepsis (b), AKI (d), and ALI (f). The solid lines indicate mean values. Lighter semitransparent colors surrounding
the solid lines indicate uncertainty by 95% confidence intervals calculated from the five test datasets (n= 163,050 patients examined over 5 cross-
validation folds with a test size of 10%).
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Fig. 3 Results from the explanation module displays for three individual patients. Three selected patient timelines with back-propagated relevance for
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P, plasma; eGFR, estimated Glomerular filtration rate.
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physiological values of respiration frequency and pulse rate do
not seem to increase close to the prediction time, but, inspecting
the increasing sizes of relevance, it appears that the xAI-EWS
attributes more weight to recent values. Figure 3b and c show the
10 most relevant parameters with respect to AKI and ALI for two
patients with risk scores of 90.4% and 83.8%, respectively.

In terms of the population-based perspective, the xAI-EWS is
able to facilitate transparency and, thereby, induce trust, by giving
clinicians insights into the internal mechanics of the model
without any deep technical knowledge of the mechanisms
behind it.

In Fig. 4, the 10 most important clinical parameters for each of
the three models are shown. The parameters are sorted by the
decreasing mean relevance as computed for the local, back-
propagated relevance scores across the entire population, but only
for patients who were positive for sepsis, AKI, or ALI.

The blue horizontal bars in the left column of Fig. 4 display the
mean relevance. In the local explanation summary in the right-

hand column of Fig. 4, the distribution of the back-propagated
relevance scores for each clinical parameter are shown and color-
coded by the parameter value associated with the local
explanation. As an example, in Fig. 4c and d, the AKI model
seems to associate high P-creatinine levels and low estimated
glomerular filtration rates with AKI. When the model is confident
about a decision, it will output a high probability. This high
probability will result in more relevance available for distributing
backward; it will also result in larger relevance scores. On the
contrary, when the model does not believe that a patient will
develop an acute critical illness, it will output a low probability,
and the associated relevance scores will also be low. The summary
distribution allows clinicians to get an idea of what to expect from
the model in clinical practice.

Discussion
In this study, we present xAI-EWS—an explainable AI early
warning score system for early detection of acute critical illness.
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While maintaining a high predictive performance, our system
explains to the clinician on which relevant EHRs data the pre-
diction is grounded.

Previous work has employed different strategies to develop
explainable prediction models13,32–36. RNN variations with
attention have been suggested for illness severity assesment13, risk
of hospitalization prediction32, sepsis prediction, and myocardial
infarction prediction35. Shickel et al.13 developed an interpretable
deep learning framework called DeepSOFA that leveraged tem-
poral measurements to assess illness severity at any point during
an ICU stay. An RNN with gated recurrent units (GRU) and self-
attention was proposed to highlight particular time steps of the
input time series that the model believed to be most important in
formulating its mortality prediction. Kaji et al. demonstrated how
attention can be applied at the level of input variables themselves
when predicting outcomes for ICU patients35. Choi et al. used a
factorized approach to compute attention over both variables and
time using embedded features rather than the immediate input
features themselves36. Zhang et al. compressed the entire patient
EHR into a complete vector representation and used GRU and
self-attention to predict the future risk of hospitalization in an
interpretable framework called Patient2Vec32. Our work differ-
entiates from the above studies by utilizing TCN and LRP instead
of RNNs with attention.

It is important to note that the xAI-EWS presented in this
study should not be conceived as the one-and-only multi-
outcome model. Rather, it should be viewed as a general method
of building precise and explainable models for acute critical ill-
ness. Following this line of thinking, it is obvious that other
models with important critical outcomes, such as hypokalemia,
hyperkalemia, acute constipation, and cardiac arrest, should be
added to the three models presented in this study. This will result
in a series of EWS models that are all specialists in their respective
fields.

One important point to note is that more work is needed to
investigate better ground truth definitions of the evaluated critical
illnesses, such as AKI and ALI. We based the ground truth on the
need for continuous positive airway pressure (CPAP) or non-
invasive ventilation (NIV) because PaO2/FiO2 measurements
were not available. The KDIGO is an indicator of AKI that has a
long lag time after the initial renal impairment, as mentioned by
Tomašev et al.1. Our model is trained and has been tested on a
large dataset that is highly representative of the Danish popula-
tion. However, validating the predictive performance of the xAI-
EWS on a different population would make for an interesting
study, and, as the xAI-EWS currently uses just 33 clinical para-
meters, this appears feasible. An interesting subject for further
study would also be to compare how well the explanation module
in this paper conveys explanations to the clinical experts in var-
ious contexts compared to alternatives. To that end, Holzinger
et al.37 recently proposed a Likert-scale based method tailored to
explanations from AI.

We limited the length of the observation window to 24 h to
ensure that the model was based on clinical, and time-relevant,
features. A variable-length window greater than 24 h should be
explored in an upcoming study.

Model development was done in an iterative way where results
from technical development were continuously discussed with
clinicians from an emergency department. The purpose of this
process was to ensure that the models learned at least some
correlations that are already considered established knowledge in
the clinical field. It would be obvious to try to use this technology
hypothesis-generating, whereby output from LRP analysis is used
as inspiration to discover new and unknown correlations.

The low prevalence of the sepsis, AKI, and ALI (2.44%, 0.75%,
and 1.68%) resulted in a very unbalanced classification problem.

To combat this imbalance, we tried to oversample the positive
class with replacements. The oversampling did not affect model
performance, but stretched the output probabilities into a wider
range. The results reported were computed without resampling.

In summary, we have presented the xAI-EWS—an explainable
AI EWS system for the prediction of acute critical illness using
EHRs. The xAI-EWS shows a high predictive performance while
enabling the possibility to explain the predictions in terms of
pinpointing decisive input data to empower clinicians to under-
stand the underlying reasoning of the predictions. We hope that
our results will be a steppingstone toward a more widespread
adoption of AI in clinical practice. As stated, explainable pre-
dictions facilitate trust and transparency—properties that also
make it possible to comply with the regulations of the European
Union General Data Protection Regulation, the Conformité
Européenne (CE) marking, and the United States Food and Drug
Administration38.

Methods
Data description. In this study, we analyzed the secondary healthcare data of all
residents of four Danish municipalities (Odder, Hedensted, Skanderborg, and
Horsens) who were 18 years of age or older for the period of 2012–2017. The data
contained information from the electronic health record (EHR), including bio-
chemistry, medicine, microbiology, and procedure codes, and was extracted from
the “CROSS-TRACKS” cohort, which embraces a mixed rural and urban multi-
center population with four regional hospitals and one larger university hospital.
Each hospital comprises multiple departmental units, such as emergency medicine,
intensive care, and thoracic surgery. We included all 163,050 available inpatient
admissions (45.9% male) during the study period and excluded only outpatient
admissions. The included admissions were distributed across 66,288 unique resi-
dents. The prevalence for sepsis, AKI, and ALI among these admissions was 2.44%,
0.75%, and 1.68%, respectively (see Table 1). The CROSS-TRACKS cohort offers a
combined dimensional model of the secondary healthcare data. Merging all data
sets is possible via a unique personal identification number given to all Danish
citizens and by which all information within any public institution is collected31.

The model parameters were limited to include 27 laboratory parameters and six
vital signs (see Tables 2 and 3). The parameters were selected by trained specialists
in emergency medicine (medical doctors) with the sole purpose of simplifying the
model to enable a better discussion of the model explanations. While a deeper
model with more parameters might lead to better performance, it would also have
made the discussions between clinicians and software engineers difficult. Therefore,
the scope of this article is not to obtain the best performance at all costs but to
demonstrate how clinical tasks can be supported by a fully explainable deep
learning approach.

Data preprocessing. In the data extracted from the CROSS-TRACKS cohort, each
admission is represented as a time-ordered sequence of EHR events. Importantly,
the time-stamped order of this data reflects the point in time at which the clinicians
record each event during the admission. Each event comprises three elements: a
time stamp; an event name, such as blood pressure; and a numerical value. The
event sequence is partitioned in aggregated intervals of one hour, such that the
observation window of 24 h is divided into 24 one-hour periods, and all the events
occurring within the same one-hour period are grouped together by their average
numerical value.

Gold standards. Via a classification process, each admission was classified as
sepsis-positive, AKI-positive, ALI-positive, or negative (no critical illness). For
sepsis classification, we followed the recent Sepsis-330,39 implementation by Moor
et al.5, according to which both suspected infection and organ dysfunction are

Table 1 Patient population description.

Unique patients, no. 66,288
Unique admissions, no. 163,050
Age, median years 55.2
Gender, male, % of total admissions 45.9
Length of stays, median hours 153.6
Laboratory measurements, average per admission 39
Hospital mortality, % of total admissions 0.85
Sepsis present, % of total admissions 2.44
Acute Kidney Injury present, % of total admissions 0.75
Acute Lung Injury present, % of total admissions 1.68
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required to be present5,30,39. Suspected infection was defined by the co-occurrence
of body fluid sampling and antibiotic administration. When a culture sample was
obtained before antibiotics administration, the antibiotic had to be ordered within
72 h. If the antibiotic was administered first, then the culture sample had to follow
within 24 h.

The degree of organ dysfunction is described by an acute increase in the SOFA40

score and an increase of more than or equal to two points is used in the criteria for
sepsis39. To implement the organ dysfunction criterion, we used a 72-h window
from 48 h before to 24 h after the time of suspected infection, as suggested by Singer
et al.30 and Moor et al.5. The Sepsis-3 implementation is visualized in Fig. 5.

AKI classification was performed according to the KDIGO criteria31. KDIGO
accepts three definitions of AKI: (1) an increase in serum creatinine of 0.3 mg/dl
(26.5 μmol/l) within 48 h; (2) an increase in serum creatinine by 1.5 times the
habitual creatinine level of a patient within the previous seven days; and (3) a urine
output of <0.5 ml/kg/h over 6 h. Following the work of Tomašev et al.1, only the
first two definitions were used to provide ground-truth labels for the onset of AKI
as urine measurements were not available. The habitual creatinine level was
computed as the mean creatinine level during the previous 365 days. We used
binary encoding for AKI such that all three severity stages (KDIGO stages 1, 2, and
3) were encoded as positive AKI. For ALI classification, we considered the presence
of either NIV or CPAP during the admission, because PaO2/FiO2 measurements
were not available. The ALI onset was the first occurrence of either NIV or CPAP
(see Fig. 5).

Prediction module. The AI-EWS model is designed as a variation of a con-
volutional neural network (CNN) called a temporal convolutional network
(TCN). CNNs have dominated computer vision tasks for the last century and
are also highly capable of performing sequential tasks, such as text analysis
and machine translation41. A TCN23,24 models the joint probability distribution
over sequences by decomposing the distribution over discrete time-steps
pθ xð Þ ¼QT

t¼1 pθ xt jx1:t�1ð Þ, where x ¼ x1; x2; ¼ ; xTf g is a sequence, and the
joint distribution is parameterized by the TCN parameter θ. Thus, a TCN
operates under the autoregressive premise that only past values affect the current
or future values, e.g., if a patient will develop acute critical illness. Moreover,
TCNs differ from “ordinary” CNNs by at least one property: the convolutions in
TCNs are causal in the sense that a convolution filter at time t is only dependent
on the inputs that are no later than t, wherein the input subsequence is
x1; x2; ¼ ; xt . TCNs can take a sequence of any length as input and output a
sequence of the same length, similar to RNNs22,28. The TCN achieves this by
increasing the receptive field of the model with dilated convolutions instead of
performing the traditional max pooling operation, as seen in most CNNs.
Dilated convolutions achieve a larger receptive field with fewer parameters by
having an exponential stride compared to the traditional linear stride. By
increasing the receptive field, a temporal hierarchy comparable to multi-scale
analysis from computer vision can be achieved42. Figure 6 schematizes the xAI-
EWS model and the concept of dilated convolutions. At the time of prediction,
the xAI-EWS model receives an input matrix of shape time-steps × features for
each patient.

The data are processed by three temporal blocks, each including one-
dimensional dilated causal convolutions (Conv1d) with 64 filters, ReLU
activations43, layer44, and one-dimensional spatial dropout layers45. Dilation is
increased between each temporal block, but keep it constant inside each temporal
block (meaning that the second conv1d layer in each temporal block has a dilation
= 1). The receptive field for this model can be calculated with
1þPn

i¼1 k� 1ð Þ* 2i�1 þ 1ð Þ, where k is kernel size and n is the number of
temporal blocks. We used a kernel size= 4 yielding a maximum receptive field of
31. Outputs from the third temporal block are pooled together across time-steps by
a global average pooling operation46 to obtain a stabilizing effect for the final

output of the model. The pooled output from each kernel in the dilated causal
convolutions is flattened to a single vector that is used as input to a final dense layer
followed by a softmax activation function. The output from the softmax activation
is the probability of future sepsis, AKI, or ALI during admission.

Training and hyperparameters. The model was trained to optimize the cross-
entropy loss using the Adam optimizer47 with mini-batches of the size of 200, a
learning rate of 0.001, and a dropout rate of 10%. All weights were initialized with
He Normal initialization48. The model was trained on a NVIDIA Tesla V100 GPU.
Convergence was reached in ~30 min.

Explanation module. In simple models, such as linear regression models, the
simple association between input and the prediction outcome is readily transparent
and explainable. Consider the linear function fc that weights the input x by wc in
order to assign a decision for class c:

fc xð Þ ¼ wT
c x ¼

X
i

wicxi: ð1Þ

Here, each input feature xi of x contributes together with the trainable weight
wic to the overall evaluation of fc through the quantity wicxi. The importance-
weighted input, therefore, offers a simple explanation for a decision made by the
linear model. In contrast, the complexity associated with the multi-layer non-linear
nature of deep learning models counteracts with such simplicity in explanations.

Layer-wise relevance propagation (LRP)23–27 is an explanatory technique that
applies to deep-learning models, including TCNs. Starting from the output fc xð Þ,
LRP decomposes an explanation into simpler local updates, each recursively
defining the contribution to the explanation (called relevance) for all activating
neurons in the previous layer. The initial relevance score Rj ¼ fc xð Þ is hereby
propagated backward through the network by local relevance updates Ri j between
connecting neuronsi and j, until the input layer is finally reached. In this process,
all incoming relevance values to an intermediate node i are pooled, Ri ¼

P
j Ri j ,

before its relevance is propagated to the next layer. Figure 7 illustrates the relevance
propagation, which is similar to standard backpropagation of errors except that
relevance values are propagated backward in the network instead. The conservation
property23, one of the important defining properties in LRP, ensures that the total
back-propagated relevance amounts to the extent to which the illness of interest is
detected by the function fc xð Þ, which in this paper equals the logits that feed into
the final transformation layer.

In this process, all incoming relevance values to an intermediate node i are
pooled, Ri ¼

P
j Ri j , before its relevance is propagated to the next layer. Figure 7

illustrates the relevance propagation, which is similar to standard backpropagation
of errors except that relevance values are propagated backward in the network
instead.

There are many variations of local backpropagation rules in the LRP
framework. See, e.g., Montavon et al.49 for a collection of commonly used LRP
rules. We have used propagation rules that can be interpreted as DTD23, which
defines a sound theoretical framework behind most of the LRP variations. In DTD,
a local backward propagation of relevance accounts for a non-linearity in the
network model by a first-order Taylor approximation at some well-chosen root-
point. Using the origin as root recovers the original LRP update rule from Bach
et al.25. That is, the relevance Rj at neuron j propagates backward to neuron i as

Ri j ¼
wijaiP
i wijai

Rj ð2Þ

where ai is the activation for neuron i. Notice that this local relevance-update
rule is similar to the simple explanation for the linear model in Eq. (1), except that
the normalization ensures that relevance is conserved across layers. It is the

Table 2 List of clinical parameters.

Laboratory parameters

P(aB)-Hydrogen carbonate P(aB)-Potassium P-Creatinine
P(vB)-Hydrogen carbonate B-Hemoglobin P-Bilirubin
P(aB)-pO2 B-Neutrophils P-Prolactin
P(vB)-pCO2 B-Eythrocyte sedimentation rate P-Glucose
P(aB)-pCO2 B-Platelets P-C-reactive protein (CRP)
P(aB)-pH B-Leukocytes Hb(B)-Hemoglobin A1c
P(vB)-pH P-Sodium Glomerular filtration rate (eGFR)
P(aB)-Lactate P-Potassium
P(aB)-Sodium P-Lactate dehydrogenase (LDH)
P(aB)-Chloride P-Albumin
Vital sign parameters
Systolic blood pressure Respiratory frequency SpO2 (Pulsoxymetry)
Diastolic blood pressure Pulse Temperature
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simplest local relevance propagation in the LRP framework, known as simply LRP,
LRP-0, or the z-rule in DTD.

In general, the Taylor expansion that defines the local relevance propagation
rule depends on the type of non-linearity and can, in addition, be engineered to
enforce desirable properties based on root-point restrictions23. The network for the
model considered in this work is composed of only ReLU activations and linear
projections without a bias term. In this case, we can use a particularly engineered

rule that will only distribute relevance along positive contributions through the
layers in the network and therefore produces sparser (i.e., simpler) explanations.
This rule is in the literature known as the z+-rule for DTD or LRP-α1β0, which
again is a special case of LRP-γ49. It is defined as

Ri j ¼
wþij aiP
i w
þ
ij ai

Rj ð3Þ

SOFA Score

SI-window

48 h 24 h

> = 2 pts.

SI

Sepsis onset AKI onset ALI onset

First NIV/CPAP treatment

a b c

CPAP CPAP NIV

p-Creatinine
>1.5 x habitual / 7 days
>26.5 µmol/L / 48 hHabitual

Fig. 5 Gold standards for sepsis, AKI, and ALI. Sepsis (a), AKI (b), ALI (c), suspected infection (SI).

Input

Hidden layer
Dilation = 1

Hidden layer
Dilation = 1

Dilation structure 

Onset

0 h3 h12 h24 h 6 h

Predictions

24 h
observation

windows

Admission

Input to model

Dilated Causal Conv

Layer Norm

Spatial Dropout

ReLU

Dilated Causal Conv

Layer Norm

Spatial Dropout

ReLU

Temporal blockc

a

Temporal block 2 (TB2)

Temporal block 1 (TB1)

Global Average Pooling

Dense

Softmax

Output

Input

b
Output to 
upper layers
Dilation = 1

Hidden layer
Dilation = 2

Hidden layer
Dilation = 1

TB2

TB1

Flatten

Temporal block 3 (TB3)

d

Hidden layer
Dilation = 4

TB3

Fig. 6 The xAI-EWS model architecture. The models in this study are trained and evaluated at 0, 3, 6, 12, and 24 h before the onset of critical illness. Each
model has a 24-h retrospective observation window. The color gradient from green to red illustrates continuous deterioration towards acute critical illness
(a). The overall model architecture of the AI-EWS model is shown in b. The xAI-EWS uses three temporal blocks (c), each comprising one-dimensional
dilated causal convolution layers, ReLU activations, one-dimensional dropout layers, and normalization layers. Red layers are only used during training and
are omitted when the model is used for predictions and explanations. The overall dilation structure of the model is shown in d. The one-dimensional dilated
causal convolution layers allow the model to skip some points during convolution and, thereby, increase the receptive field of the model. The dilation
structure is illustrated for kernel size= 2.

Ri

Ri Rj

j

OutputInput

Fig. 7 Layer-wise relevance propagation. LRP decomposes the problem of explaining a complex multilayer neural network model into simpler sub-
functions that are easier to analyze and explain. The relevance score at input neuron Ri is obtained by pooling all incoming relevance values Rj from the
output neurons in the next layer.
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where wþij ¼ wij for positive weights and otherwise equals zero. Finally, at the
input layer, we used the so-called DTD w2-rule

Ri j ¼
w2
ijP

i w
2
ij
Rj ð4Þ

as it is recommended49 for real valued input.
The DTD (and LRP) framework leaves flexibility to mix layer-specific rules in

the network. As mentioned above, we have used the z+-rule in Eq. (3) for all
intermediate layers, and in that way, we favor simpler explanations, with features
that are explained as either relevant (positive) or irrelevant (zero) for a given
prediction.

The AI-EWS explanation module allows two perspectives on model
explanations: an individual and a population-based perspective. For the individual
perspective, DTD can be used for all patients with a high probability of developing
acute critical illness. The module will simply pinpoint which clinical parameters at
a given point in time were relevant for the given prediction (Fig. 3). For the
population-based perspective, relevance is back-propagated from the output
neuron representing the positive classes (sepsis, AKI, and ALI) and is only
considered for the patients with a positive ground truth label (sepsis, AKI, and
ALI). The individual data points and back-propagated relevance scores for these
patients were aggregated in two ways to enable global parameter importance
estimation and local explanation summary34 (Fig. 4). For estimating global
parameter importance, the mean relevance scores were computed for each clinical
parameter. This computation enabled parameter-importance estimation
comparable to standardized regression coefficients in multiple linear regression or
feature importance measures in random forest50. The local explanation summary
(Fig. 4b) presents all individual data points, colored by parameter value and
displaced by the relevance. In the local explanation summary, the height of the data
points shown for each parameter correlates with the number of data points at their
associated level of relevance. The population-based perspective is simplified by
ignoring potential temporal relevance variations and treating all data points at
different times equally. The visual concepts of global parameter importance
estimation and local explanation summary used in this paper are adopted from the
shapley additive explanations (SHAP)34 library by Lundberg et al. The SHAP
toolbox was not used to provide explanations. In this paper, DTD was
implemented using the iNNvestigate51 library developed by Alber et al.
iNNvestigate is a high-level library with an easy-to-use interface for many of the
most-used explanation methods for neural networks.

Explaining predictions in other ways. Over the last decade, many other meth-
ods52–63 have been proposed to address the problem of attributing a value to each
feature in order to explain the prediction from a complex model. Recent work62,63

have brought some theoretical understanding into fundamental properties that
relates many of the methods. In general, the relevance attribution methods can be
categorized into two basic categories62: (1) backpropagation-based methods that
propagate the attribution of relevance backward through the network form the
relevance of output and back to the input features, and (2) perturbation-based
methods that rely on running multiple perturbations of the input forward through
the network and measuring the consequence that a perturbation may have on the
output.

With reference in the Gradient × Input method58, Ancona et al.62 defines
a unification of many of the backpropagation-based attribution methods. In
particular, they show that LRP (DTD with the z-rule), DeepLIFT (Rescale)59,
and Integrated Gradients60 are all strongly related by a reformulation that
expresses the attribution as the elementwise multiplication of a modified
gradient with either the input (Gradient × Input, LRP) or with the difference
between the input and a baseline (Integrated Gradients, DeepLIFT). The
modification to the gradient is achieved by letting backpropagation implement a
modified chain-rule

d*aj
dai
¼ wijg zj

� �
; ð5Þ

where wij is the standard gradient of the linear transformation zj ¼
P

i wijai ,
and gðzjÞ represents some unification of the gradient for the non-linear activation.
For Gradient × Input, the unifying gradient function gðzjÞ is the usual instant
gradient, whereas it is some form of average gradient for the remaining three
methods. We refer to Ancona et al. for the actual expressions of gðzjÞ. Interestingly,
it turns out that all four methods would be equivalent in this paper’s setup,
with only ReLU non-linearities, no additive bias in the linearities, and x ¼ 0 as
baseline.

Now, the DTD z+-rule, as we have used in all the intermediate layers, does not
fit directly into the unified gradient framework, but it is a trivial exercise to show
that the backpropagation rule in Eq. (5) can be modified as

d*aj
dai
¼ wþij g

þðzjÞ; ð6Þ

where gþðzjÞ ¼ aj=z
þ
j , z

þ
j ¼

P
i w
þ
ij ai accounts for the fact that the relevance

method only distributes relevance along positive contributions.

Backpropagation-based methods are in general fast compared to perturbation-
based methods, as the number of features grow62. The backpropagation-based
methods require a fixed number of forward-prediction and backward-gradient
passes to compute the attribution, whereas perturbation-based methods demand a
non-linear number of forward passes in the number of features to properly account
for the complex nature of a deep network.

On the other hand, perturbation-based methods may implement other desirable
properties, such as the fairness constraints from cooperative game theory, when
attributing an outcome of a prediction (the game) to the individual features (the
players)53,61,63,64. In particular, Lundberg and Lee63 recently demonstrated that
Shapley values65 uniquely defines the solution to these constraints within a large
class of additive feature attribution methods, which includes LIME57, DeepLIFT,
and LRP. Unfortunately, computing exact Shapley values is, in general, NP-hard66

and sampling approximations are therefore considered. By defining a specific
kernel in the LIME setup, Lundberg and Lee introduced KernelSHAP that reduces
the number of necessary samples by combining sampling and penalized linear
regression, as it is done in LIME. The same paper further proposed DeepSHAP as a
variant of DeepLIFT that computes a layer-wise composition of approximate
Shapley values. Unfortunately, the chain rule does not hold in general for Shapley
values64, and to that end, Ancona et al. presents a method based on uncertainty
propagation that allows approximate Shapley value to be computed in polynomial
time.

Baseline models
MEWS. The MEWS baseline model interprets raw MEWS scores as a prediction
model for acute critical illness. MEWS was implemented as the Danish variant
called “Early detection of critical illness” [TOKS: Tidlig opsporing af kritisk syg-
dom]. MEWS scores were calculated each time one of the model components was
updated with a new measurement. Missing values were imputed with a standard
carry-forward interpolation.

SOFA. This model interprets raw SOFA30,39,40 scores as a prediction model for
acute critical illness. SOFA scores were calculated each time one of the model
components was updated with a new measurement. Missing values were imputed
with a standard carry-forward interpolation.

GB-Vital. This model is a replication of a well-known sepsis detection model3,6,9

from the literature, which has shown great results in a randomized study7. The
complete description of the model can be found in the study from Mao et al.6. The
model parameters are constructed by considering six vital-signs from the EHR:
systolic blood pressure, diastolic blood pressure, heart rate, respiratory rate, per-
ipheral capillary oxygen saturation, and temperature. For each of the six vital signs,
five parameters are constructed to represent the average value for the current hour,
the prior hour, and the hour prior to that hour, together with the trend value
between two succeeding hours. Based on these 30 parameters (five parameters from
each of the six vital-sign events), the GB-Vital model is constructed as a gradient-
boosted classifier of decision trees67.

Evaluation. The xAI-EWS model was validated using five-fold cross-validation.
Data were randomly divided into five portions of 20% each. For each fold four
portions (80%) was used to fit the xAI-EWS model parameters during training. The
remaining 20% was split into two portions of 10% each for validation and test. The
validation data were used to perform an unbiased evaluation of a model fit during
training, and the test data were used to provide an unbiased evaluation of the final
model. All data for a single patient was assigned to either train, validation or test
data. Figure 2 report performance from the test data. For each fold data were
shifted such that a new portion was used for testing. The cross-validation scheme is
illustrated in Supplementary Fig. 1. As comparative measures for the predictive
performance, we used the AUROC and AUPRC. Regarding the explanations, the
quality was assessed by manual inspection of trained specialists (medical doctors)
in emergency medicine.

Ethics and information governance. The study was approved by The Danish Data
Protection Agency [case number 1-16-02-541-15]. Additionally, the data used in
this work were collected with the approval of the steering committee for CROSS-
TRACKS. Only retrospective data were used for this research without the active
involvement of patients or potential influence on their treatment. Therefore, under
the current national legislature, no formal ethical approval was necessary.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors have accessed the data referred to herein by applying the CROSS-TRACKS
cohort, which is a newer Danish cohort that combines primary and secondary sector
data68. Due to the EU regulations, GDPR, these data are not readily available to the wider
research community per se. However, all researchers can apply for access to the data by
following the instructions on this page: http://www.tvaerspor.dk/.
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Code availability
We made use of several open-source libraries to conduct our experiments: The models
used the machine learning framework TensorFlow library with custom extensions
(https://www.tensorflow.org) and Keras (https://keras.io). Explanations were calculated
with the high-level library for explaining neural networks iNNvestigate (https://github.
com/albermax/innvestigate). SHAP (https://github.com/slundberg/shap) with custom
extensions was used to visualize explanations. The analysis was performed with custom
code written in Python 3.5. Our experimental framework makes use of proprietary
libraries that belong to Enversion A/S, and we are unable to publicly release this code. We
have described the experiments and implementation details in the “Methods” section to
allow for independent replication. Further inquiry regarding the specific nature of the AI
model can be made by relevant parties to the corresponding author.
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