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Doubly robust estimation combines a form of outcome regression with a model for the exposure (i.e., the pro-
pensity score) to estimate the causal effect of an exposure on an outcome. When used individually to estimate
a causal effect, both outcome regression and propensity score methods are unbiased only if the statistical model is
correctly specified. The doubly robust estimator combines these 2 approaches such that only 1 of the 2 models
need be correctly specified to obtain an unbiased effect estimator. In this introduction to doubly robust estimators,
the authors present a conceptual overview of doubly robust estimation, a simple worked example, results from
a simulation study examining performance of estimated and bootstrapped standard errors, and a discussion of the
potential advantages and limitations of this method. The supplementary material for this paper, which is posted on
the Journal ’s Web site (http://aje.oupjournals.org/), includes a demonstration of the doubly robust property (Web
Appendix 1) and a description of a SAS macro (SAS Institute, Inc., Cary, North Carolina) for doubly robust
estimation, available for download at http://www.unc.edu/~mfunk/dr/.

causal inference; epidemiologic methods; propensity score

Abbreviations: BMI, body mass index; IPW, inverse probability weighted; PS, propensity score; SE, standard error.

Correct specification of the regression model is a funda-
mental assumption in epidemiologic analysis. When the
goal is to adjust for confounding, the estimator is consistent
(and therefore asymptotically unbiased) if the model reflects
the true relations among exposure and confounders with the
outcome. In practice, we can never know whether any par-
ticular model accurately depicts those relations. Doubly ro-
bust estimation combines outcome regression with
weighting by the propensity score (PS) such that the effect
estimator is robust to misspecification of one (but not both)
of these models (1–4). While many estimators with the dou-
bly robust property have been described in the statistical
literature (4, p. 546; 5), we focus on the doubly robust
estimator originally described by Robins et al. (1).

In this introduction, we present a conceptual overview of
doubly robust estimation, sample calculations for a simple
example, results from a simulation study examining perfor-
mance of model-based and bootstrapped confidence inter-
vals, and a discussion of the potential advantages and
limitations of this method. In the supplementary material

for this paper, which is posted on the Journal’s Web site
(http://aje.oupjournals.org/), we demonstrate the doubly ro-
bust property (Web Appendix 1) and describe a SAS macro
(SAS Institute, Inc., Cary, North Carolina) for doubly robust
estimation (Web Appendix 2).

CONCEPTUAL OVERVIEW

Doubly robust estimation combines 2 approaches to esti-
mating the causal effect of an exposure (or treatment) on an
outcome. We examine in greater detail the 2 component
models before describing how they are combined such that
the resulting estimator is doubly robust.

Maximum likelihood of a regression model of the
outcome

Imagine an observational cohort study in which the point
exposure of interest is statin initiation (X ¼ 1 if exposed and
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X ¼ 0 if unexposed) and the outcome of interest is lipid
levels at 1 year of follow-up (Y). We have k covariates
(Z1, Z2,. . ., Zk), measured prior to exposure, which may
confound the relation between statin initiation and lipid
levels at follow-up. Letting Z denote the collection of
Z1,. . .,Zk, we specify a single model in which we simulta-
neously estimate the exposure-outcome association and the
confounder-outcome associations as follows:

EðY j X;ZÞ ¼ b0 þ b1X þ b2Z1þb3Z2 þ . . .þ bkþ1Zk:

In our example, we could substitute the measured covariates
such as sex, body mass index (BMI), and age and estimate
the coefficients (bi for i¼ 0 to kþ1) with a standard software
package for linear regression.

E
�
Yj statin; baseline covariates

�
¼ b0 þ b1statin

þ b2femaleþ b3BMI

þ . . .þ bkþ1Zk:

The maximum likelihood estimate for b1 is interpreted as
the estimator of the mean difference in lipid levels at follow-
up due to statin use, adjusted for (and thus conditional on)
the other covariates in the model (sex, BMI, etc.). This
estimate of the effect of exposure is unconfounded assuming
no unmeasured confounders and assuming that the outcome
regression model has been correctly specified. If the con-
founders are misspecified in this model, the estimated effect
of exposure may be biased. This effect estimate can be in-
terpreted as a causal effect estimate under several key as-
sumptions, detailed below.

Alternatively, we could use the estimated parameters
from this model in conjunction with each individual’s actual
covariate values to calculate the predicted mean response
(lipid level at follow-up) under each exposure condition
(one of which is counterfactual) for each person in the co-
hort. The predicted responses can be used to calculate
a mean marginal difference due to exposure. (Note that this
step is not actually necessary in the case of a linear model
without interactions between the treatment indicator and the
covariates because the parameter estimate already has a mar-
ginal interpretation.) This approach is more formally known
as estimation by maximum likelihood of the g-computation
formula (6, 7) and is the equivalent of maximum likelihood
estimation of the parameters of a marginal structural model
(8). As we discuss in more detail below, the doubly robust
estimator uses the outcome regression models in this mar-
ginalized approach. This effect estimate is consistent (and
therefore asymptotically unbiased) if there are no unmea-
sured confounders and the outcome regression models have
been correctly specified. It is interpretable as a causal effect
under the assumptions noted below.

Inverse probability weighted (IPW) approach

Rather than control confounding by adjusting for the as-
sociation between covariates and the outcome, we could
control confounding by using the PS, defined as the condi-
tional probability of exposure given covariates. The PS is

typically estimated from the observed data with a model
such as the following:

logitPðX ¼ 1j ZÞ ¼ b0 þ b1Z1 þ b2Z2 þ b3Z3 þ b4Z4:

þ . . .þ bkZk:

In our example, we could substitute the measured cova-
riates such as age, sex, and BMI and estimate the coeffi-
cients (bi for i¼ 0 to k) with a standard software package for
logistic regression. (Alternatively one could use, for exam-
ple, a probit model or a machine learning approach (9, 10)).

logitPðstatin ¼ 1j baseline covariatesÞ ¼ b0 þ b1age

þb2 femaleþ b3BMIþ . . .þ bkZk:

The estimated parameters from this model can be used in
conjunction with each individual’s actual covariate values to
calculate the predicted probability of statin initiation condi-
tional on those covariates, the PS, for each person in the
cohort (11).

The PS can be used to control for confounding in a variety
of ways, one of which is to weight the observed data. Inverse
probability weights are calculated as the inverse of the con-
ditional probability that an individual received the exposure
he or she actually received, that is, 1/PS for the exposed and 1/
(1� PS) for the unexposed (12, 13). Weighting by this quan-
tity creates a pseudopopulation in which the distributions of
confounders among the exposed and unexposed are the same
as the overall distribution of those confounders in the original
total population (14). If the distributions of confounders are
the same within each exposure group, then there is no longer
an association between the confounders and exposure, mak-
ing the exposed and unexposed exchangeable (15). There-
fore, the crude association between the exposure and the
outcome in the pseudopopulation should be unconfounded.
Returning to our example, the crude association between
statin initiation and lipid levels at follow-up should be un-
confounded in the pseudopopulation assuming no unmea-
sured confounders and assuming that the model used to
specify the PS (and therefore the weights) is correct. If the
model ismisspecified, then theweightingwill b inappropriate
and the IPW estimator may be biased.

The doubly robust estimator

The doubly robust estimator requires us to specify regres-
sion models for the outcome and the exposure as a function
of covariates. In the case of this particular doubly robust
estimator, we model the relations between confounders
and the outcome within each exposure group. The resulting
parameter estimates are used to calculate the predicted re-
sponse ( bY0 and bY1) for each individual in the population
under the 2 exposure conditions (X ¼ 1 and X ¼ 0) given
covariate values (Z). In addition, we model the exposure as
a function of covariates to estimate the PS (or predicted
probability of exposure conditional on covariates, Z) for
each individual using the observed data. These quantities
are all subject specific, but we have omitted the additional
subscript (i) for readability.
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Having estimated the PS, Ŷ0 and Ŷ1, we combine these
values as shown in Table 1 to calculate the doubly robust
(DR) estimates of response in the presence and absence of
exposure (DR1 and DR0, respectively) for each individual.
Among exposed participants (where X ¼ 1), DR1 is a func-
tion of individuals’ observed outcomes under exposure
(YX ¼ 1) and predicted outcomes under exposure given co-
variates (Ŷ1), weighted by a function of the PS. The esti-
mated value for DR0 is simply the individuals’ predicted
response, Ŷ0, had they been unexposed based on the param-
eter estimates from the outcome regression among the un-
exposed and the exposed individuals’ covariate values (Z).
DR1 and DR0 are calculated analogously for those who were
unexposed, but now the observed response (YX ¼ 0) is com-
bined with the predicted response (Ŷ0) to estimate DR0,
while DR1 merely corresponds to the predicted response
in the presence of exposure conditional on covariates (Ŷ1).
Finally, the means of DR1 and DR0 are calculated across the
entire study population. The estimated means are used to
calculate the difference or ratio effect measure.

Closer examination of the equation for this doubly robust
estimator suggests an intuitive explanation of the doubly
robust property. With minor manipulation, it can be repre-
sented as an estimator for the quantity of interest (the mean
response if everyone had been exposed/unexposed) plus
a second term referred to as the ‘‘augmentation.’’ This com-
ponent is formed by taking the product of 2 bias terms—one
from the PS model and one from the outcome regression
model. If either bias term equals zero (as is the case when
one of the models is correct), then it ‘‘zeros out’’ the other,
nonzero bias term from the incorrect model. Thus, if either
the PS or the outcome regression models are correctly spec-
ified, then the ‘‘augmentation’’ term reduces to zero so
that DR1 estimates E(YX ¼ 1) and, likewise, DR0 estimates
E(YX ¼ 0). For a more detailed explanation, refer to Appen-
dix 1, in which we take the reader through a nontechnical
demonstration of this property under circumstances when
one (but not both) of the models is misspecified.

Example

In this simple example using a simulated study population
(n ¼ 10,000), we estimate the average causal effect of a

dichotomous exposure on a dichotomous outcome, account-
ing for 3 dichotomous confounders (Z1, Z2, and Z3) (Table
2). The true effect is null, but bias due to confounding results
in a crude relative risk of 1.42 (95% confidence interval:
1.31, 1.53) and a crude risk difference of 0.076 (95% con-
fidence interval: 0.060, 0.092).

Let us focus on the subset of individuals (n¼ 3,690) in this
population with Z1 ¼ Z2 ¼ Z3 ¼ 0. Of those, 1,800 were
unexposed (X ¼ 0) while 2,160 were exposed (X ¼ 1). We
can calculate DR0 and DR1 for an individual who was un-
exposed and did not experience the outcome of interest using
the formula given in equation 1 below or the more intuitive
versions given in Table 1. DR0 ¼ [0/(1 � 0.545)] � [(0.2 3
0.545)/(1 � 0.545)] ¼ �0.24 and DR1 ¼ Ŷ1 ¼ 0.2. After
estimating DR0 and DR1 for all individuals in the population
(n ¼ 10,000), we can use the mean values for DR0 (mean ¼
0.22) and DR1 (mean ¼ 0.22) to calculate a risk difference
(0.22 � 0.22 ¼ 0) or risk ratio (0.22/0.22 ¼ 1.0).

D̂DR ¼ n�1
Pn
i¼1

h
XiYi

eðZi;b̂Þ
� fXi�eðZi;b̂Þg

eðZi;b̂Þ
m1

�
Zi; â1

�i
� n�1

Pn
i¼1

h
ð1�XiÞYi
1�eðZi;b̂Þ

þ fXi�eðZi;b̂Þg
1�eðZi;b̂Þ

m0

�
Zi; â0

�i
:

ð1Þ

Assumptions

The fundamental assumptions required for the effect es-
timates to have a causal interpretation include exchangeabil-
ity (16), positivity (17), consistency (18), and no
interference (19). These assumptions are not unique to the
doubly robust estimator. Although the doubly robust prop-
erty does give the analyst 2 means to achieve exchangeabil-
ity, we emphasize that this method does not obviate the need
to measure all confounders. Bias due to unmeasured con-
founders would be reduced only to the extent that these are
correlated with measured characteristics that are included in
one of the component models.

MONTE CARLO SIMULATIONS

Lunceford and Davidian (20) present an equation for es-
timating the standard error of the doubly robust estimator
for the effect of exposure under the assumption that all
models are specified correctly. If the PS model is correctly
specified but the outcome regression models are not, theory
from IPWestimators suggests that the robust standard errors
would be overly conservative, leading to greater-than-nominal
confidence interval coverage (13). More concerning is
the scenario in which the outcome regression models are
correctly specified, whereas the PS model is not. In this
situation, theory predicts that these standard errors would
underestimate the true variability, leading to confidence in-
tervals that are too narrow and less-than-nominal coverage.
While bootstrapped standard errors and confidence intervals
are assumed to provide nominal coverage in all of the above
scenarios, we are not aware of studies specifically examin-
ing the performance of bootstrapping in this context. Thus,
we conducted a set of Monte Carlo simulations to better

Table 1. Equations for the Expected Response Under Exposed

(DR1) and Unexposed (DR0) Conditions for Each Individual in the

Populationa

DR1 DR0

General form
YX¼13X

PS
�
Ŷ1

�
X�PS

�
PS

Yx¼0ð1�X Þ
1�PS

þ
Ŷ0

�
X �PS

�
1�PS

Among X ¼ 1
YX¼1

PS
�
Ŷ1

�
1�PS

�
PS

Ŷ0

Among X ¼ 0
Ŷ1 Yx¼0

1� PS
� Ŷ03PS

1� PS

Abbreviations: DR, doubly robust; PS, propensity score.
a PS ¼ p(X ¼ 1jZ); X ¼ exposure; YX¼0 and YX¼1 ¼ observed

outcome among individuals with X ¼ 0 and X ¼ 1, respectively;

Ŷ0 ¼ E(YjX ¼ 0,Z) ¼ predicted outcome given X ¼ 0; Ŷ1 ¼ E(YjX ¼
1,Z) ¼ predicted outcome given X ¼ 1.
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understand the performance of standard errors and confi-
dence intervals, both model based and bootstrapped, under
scenarios in which at least 1 of the 2 models has been
correctly specified and therefore the estimates themselves
should be unbiased.

Methods

We simulated data in which a dichotomous exposure
(20% prevalence overall) had a null effect on a continuous
outcome (mean ¼ 0.3; standard deviation, 2.3). The mean
difference in the outcome between exposure groups was
�0.76 because of confounding by one continuous (Z1) and
one dichotomous (Z3) variable. (Details of the data genera-
tion process are provided in Web Appendix 3, which is also
posted on the Journal’s Web site (http://aje.oupjournals.
org/).)

We simulated 1,000 cohorts of size n (where n ¼ 100,
500, 1,000, or 2,000), and, within each simulated cohort, we
bootstrapped 1,000 complete resamples with replacement
(21, 22). We estimated the effect of exposure (specifically,
the difference in means) in each cohort based on 3 different
sets of models. In scenario 1, both PS and outcome regres-
sion models were correctly specified. In scenario 2, the out-
come regression models were correctly specified but the PS
model was misspecified by omitting the dichotomous con-
founder. In scenario 3, the PS model was correctly specified
but the outcome regression models were misspecified by
omitting the dichotomous confounder.

In 1,000 simulated cohorts, we identified the mean and
median of the effect estimates, the mean of the model-based
standard error (SE) (assuming correct model (ACM) speci-
fication) (SEACM) using equation 22 in Lunceford and
Davidian (20), and the standard deviation of the effect esti-
mates. We computed the ratio of the mean SEACM divided
by the standard deviation as an indication of how well
SEACM reflected the actual variability of the doubly robust
estimates. We obtained 3 sets of 95% confidence intervals
for each scenario using 1) SEACM, 2) the empirical standard
error (SEstandard deviation) based on the standard deviation of
the estimates from 1,000 bootstrapped samples and, 3) the
2.5th and 97.5th percentiles of the distribution of estimates
from 1,000 bootstrapped samples. We assessed confidence
interval coverage for each method by determining the pro-
portion of intervals that contained the true value of zero.
Two-sided 95% confidence intervals on the estimated con-
fidence interval coverage were calculated using the Wilson
score method without continuity correction (23). All simu-
lations were carried out with SAS version 9.1.3 or 9.2 soft-
ware (SAS Institute, Inc., Cary, North Carolina).

Results

Simulation results are presented in Table 3. Effect estimates
were unbiased in all scenarios. TheSEACMsubstantially under-
estimated the true variability of the estimates at n¼ 100, but it
improved as sample size increased, with nominal confidence
interval coverage at n� 1,000. The bootstrapped empirical and

Table 2. Simulated Data and Calculated Values for DR1, DR0
a

Covariate Strata

Z1 5 0 Z1 5 1

Z2 5 0 Z2 5 1 Z2 5 0 Z2 5 1

Z3 5 0 Z3 5 1 Z3 5 0 Z3 5 1 Z3 5 0 Z3 5 1 Z3 5 0 Z3 5 1

Total no. 3,960 2,040 1,890 610 740 260 410 90

p(X ¼ 1jZ) 0.545 0.118 0.762 0.262 0.730 0.231 0.878 0.444

p(Y ¼ 1jZ) 0.2 0.1 0.3 0.2 0.3 0.2 0.5 0.4

Unexposed (X ¼ 0)

No. 1,800 1,800 450 450 200 200 50 50

Y ¼ 1 360 180 135 90 60 40 25 20

Y ¼ 0 1,440 1,620 315 360 140 160 25 30

DR0jY ¼ 1 1.96 1.12 3.24 1.28 2.89 1.24 4.60 1.48

DR0jY ¼ 0 �0.24 �0.01 �0.96 �0.07 �0.81 �0.06 �3.60 �0.32

DR1 0.2 0.1 0.3 0.2 0.3 0.2 0.5 0.4

Exposed (X ¼ 1)

No. 2,160 240 1,440 160 540 60 360 40

Y ¼ 1 432 24 432 32 162 12 180 16

Y ¼ 0 1,728 216 1,008 128 378 48 180 24

DR1jY ¼ 1 1.67 7.75 1.22 3.25 1.26 3.67 1.07 1.75

DR1jY ¼ 0 �0.17 �0.75 �0.09 �0.56 �0.11 �0.67 �0.07 �0.50

DR0 0.2 0.1 0.3 0.2 0.3 0.2 0.5 0.4

Abbreviation: DR, doubly robust.
a DR0 ¼ estimated value for Y under X¼ 0 for individual i; DR1 ¼ estimated value for Y under X¼ 1 for individual i;

X ¼ exposure, Y ¼ outcome, Z1�Z3 ¼ covariates.
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percentile-based confidence intervals had nominal coverage at
all sample sizes from 100 to 2,000 in all 3 scenarios.

Conclusions

Theory predicts that SEACM may be inconsistent when
only 1 of the 2 models has been correctly specified. We
found some indication of this reflected in the relative size
of the SEACM/standard deviation across the 3 scenarios
within the same sample size. Although this did not translate
to dramatic differences in the confidence interval coverage
between scenarios, we cannot conclude on this basis that
SEACM will perform equally well in a wide range of realistic
settings (e.g., rare exposures, much larger sample sizes, di-
chotomous outcomes, nonnull associations between expo-
sure and outcome). We also found evidence that SEACM

performed poorly at sample sizes of less than 1,000 even
when both of the models were correctly specified.

Bootstrapped confidence intervals, in contrast, provided
nominal coverage across the range of sample sizes as long as
at least 1 of the 2 models was correctly specified. Thus, we
strongly recommend reporting bootstrapped estimates of the
standard error and confidence intervals.

DISCUSSION

Doubly robust estimators are a relatively new method of
estimating the average causal effect of an exposure. While
this approach has been described in the statistical literature, it
is not yet well known among the broader research commu-
nity. Prior simulations have confirmed that the doubly robust
estimator is unbiased when a confounder is omitted from 1
(but not both) of the component models (3, 20). Our own
work confirms that this extends to less extreme scenarios in

which 1 of the 2 component models has been misspecified by
categorizing a continuous confounder (24). The SAS macro
described in Web Appendix 2 gives researchers a tool for
implementing doubly robust estimation with bootstrapped
standard errors and confidence intervals. The simulations pre-
sented here indicate that bootstrapped confidence intervals
performed well across a range of sample sizes assuming at
least 1 of the models was correctly specified.

There are some other attractive features of this estimator
that are not directly due to the doubly robust property. Be-
cause the doubly robust estimator for the effect of exposure is
calculated by averaging over the expected response for each
individual under both exposure conditions, the effect esti-
mates apply to the total population and have a marginal in-
terpretation similar to that from a randomized trial. The
particular doubly robust estimator described here incorpo-
rates flexibility by modeling the effects of covariates within
levels of the exposure, which may improve control of con-
founding in situations where the effect of a confounder on the
outcome differs by exposure group. The doubly robust esti-
mator simultaneously produces relative and absolute effect
estimates. The ease with which one can estimate absolute
risks and risk differences could facilitate reporting of these
effects along with the usual ratio measures and encourage
researchers to more fully interpret their findings on both
scales. The usual IPW estimator also shares these attractive
properties with the doubly robust estimator, but the ‘‘augmen-
tation’’ that makes this estimator doubly robust also makes it
more efficient than the usual IPW estimator (20).

As with any new method, caution is warranted. The doubly
robust estimator is generally less efficient than the maximum
likelihood estimator with a correctly specified model. Thus,
there is a trade-off to consider between potentially reducing
bias at the expense of precision (20). In the context of IPW

Table 3. Estimated Standard Errors and 95% Confidence Interval Coverage When Both Components of the Doubly Robust Estimator Are

Correctly Specified (Scenario 1), Only the Outcome Regression Models Are Correctly Specified (Scenario 2), or Only the Propensity Score Model

Is Correctly Specified (Scenario 3)

Scenario
Sample
Size

Bias SEACM SD SEACM /SD

95% CI Coverage, %

SEACM

Based
95% CI

SESD

Based
95% CI

Percentile
Baseda 95% CI

1 100 �0.008 0.51 0.69 0.74 85.3 83.0, 87.4 96.2 94.8, 97.2 95.4 93.9, 96.5

500 0.001 0.25 0.27 0.94 92.9 91.1, 94.3 94.3 92.7, 95.6 94.0 92.4, 95.3

1,000 0.003 0.18 0.19 0.97 94.8 93.2, 96.0 95.8 94.4, 96.9 95.5 94.0, 96.6

2,000 �0.005 0.13 0.13 0.99 94.0 92.4, 95.3 95.2 93.7, 96.4 94.9 93.4, 96.1

2 100 �0.004 0.52 0.69 0.76 87.4 85.2, 89.3 96.1 94.7, 97.1 95.5 94.0, 96.6

500 0.000 0.25 0.26 0.93 92.5 90.7, 94.0 95.0 93.5, 96.2 94.6 93.0, 95.8

1,000 0.003 0.17 0.18 0.95 95.2 93.7, 96.4 95.9 94.5, 97.0 96.0 94.6, 97.1

2,000 �0.004 0.12 0.13 0.97 94.0 92.4, 95.3 94.8 93.2, 96.0 95.1 93.6, 96.3

3 100 �0.024 0.57 0.69 0.82 90.4 88.4, 92.1 95.8 94.4, 96.9 95.3 93.8, 96.5

500 �0.009 0.26 0.27 0.98 93.9 92.2, 95.2 95.0 93.5, 96.2 95.0 93.5, 96.2

1,000 �0.008 0.19 0.18 1.01 95.4 93.9, 96.5 95.3 93.8, 96.5 95.5 94.0, 96.6

2,000 �0.014 0.13 0.13 1.02 94.8 93.2, 96.0 94.9 93.4, 96.1 94.4 92.8, 95.7

Abbreviations: CI, confidence interval; SD, standard deviation of the estimates from 1,000 simulated cohorts; SEACM, estimated standard error

assuming correct models; SESD, standard error empirically estimated from the standard deviation of 1,000 bootstrapped resamples.
a Percentile-based confidence intervals based on the 2.5th and 97.5th percentiles of the distributions of estimates from 1,000 bootstrapped

resamples.
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estimators, it is known that weights for individuals with un-
usual combinations of characteristics and exposures can lead
to unstable estimates with relatively large standard errors
(19). It is not yet known whether the methods for handling
these influential observations (stabilized and truncated
weights (19) or trimming observations (25)) would be effec-
tive in the context of this doubly robust estimator or if other
methods of diagnosing and mitigating this bias are required.
Moreover, when both models are misspecified, the resulting
effect estimate may be more biased than that of a single,
misspecified maximum likelihood model (26).

Many aspects of applied doubly robust analysis have not
yet been adequately evaluated, including strategies for se-
lecting covariates for inclusion in the component models;
diagnostics; methods for detecting and handling effect mea-
sure modification; and reconciling differences between ef-
fect estimates from doubly robust, IPW, PS, and maximum
likelihood methods. In light of these unknowns, researchers
should consider this analytic method a complement to rather
than a substitute for other methods. We hope that rigorous
examination of this method in simulations will provide the
field with sound recommendations regarding best practices
for its use. Given that we rarely know the true relations
among exposure, outcome, and confounders, doubly robust
estimators represent an important advance in methods for
estimating causal effects from observational data.
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APPENDIX 1: DEMONSTRATION OF THE DOUBLY
ROBUST PROPERTY

A close examination of the statistical expression for the doubly
robust estimator provides an intuitive illustration of the doubly robust
property. We have adapted and expanded the proof given by Tsiatis
(p148-149, (27)) to make it more accessible to non-statisticians.
Equations have been included, but the text that accompanies them
is non-technical. We recommend Bang & Robins (3) as an excellent
intermediate reference and Tsiatis (27) or van der Laan and Robins
(28) for an in-depth theoretical treatment of doubly robust methods.

Suppose we are interested in the causal effect of an exposure X
(taking values 1 or 0 indicating presence or absence) on an outcome
Y. Using a counterfactual framework, we say that YX¼1 and YX¼0 are
the potential outcomes that would be observed in the presence and
absence of the exposure, respectively. In addition, we have measured
baseline covariates (Z) that may be causally related to exposure and/
or the outcome. All of these variables are further subscripted by i for
individuals i¼1 to n. For illustration, we consider estimation of the
difference in means due to exposure or the mean response if everyone
in the population were to be exposed E(YX¼1) minus the mean re-
sponse if everyone were to remain unexposed E(YX¼0). One could
similarly construct a relative effect measure [E(YX¼1)/E(YX¼0)].

D̂DR ¼ n�1
Pn
i¼1

h
XiYi

eðZi ;b̂Þ
� fXi�eðZi ;b̂Þg

eðZi ;b̂Þ
m1ðZi; â1Þ

i
�n�1

Pn
i¼1

h
ð1�XiÞYi
1�eðZi ;b̂Þ

þ fXi�eðZi ;b̂Þg
1�eðZi ;b̂Þ

m0ðZi; â0Þ
i ðA1Þ

¼ l̂1;DR � l̂0;DR ðA2Þ

In (A1) for the estimated effect of exposure (D̂DR), the first terms in
each average are IPW estimators for E(YX¼1) and E(YX¼0), respec-
tively. The second terms are ‘‘augmentations’’ that increase efficiency
and support the doubly robust property. In (A2) for themean difference
due to exposure, l̂1;DR estimates E(YX¼1) and l̂0;DR estimatesE(YX¼0).

The postulated model for the true PS is represented as e(Zi,b). The
expressions m0(Zi,a0) andm1(Zi,a1) are postulated outcome regression
models for the true relations between the vector of covariates and the
outcome within the unexposed and exposed, respectively. Here b̂,â0
and â1 are estimates for the parameters b, a0, and a1 in the postulated
models. The PS is estimated by substituting the estimate for b̂ obtained
by logistic regression. Similarly, m0 andm1 are estimated by substitut-
ing the estimates for â0and â1from the outcome regression models.

EðYX¼1Þ þ E

�
fX � eðZ; bÞg

eðZ;bÞ fYX¼1 � m1ðZ; a1Þg
�

ðA3Þ

To demonstrate the doubly robust property, we focus on the esti-
mator for the average response in the presence of exposure, E(YX¼1),
given by l̂0;DR[first line of (A1)]. When n is large, the sample average
estimates the population average (A3). The first term, E(YX¼1), is the
average response with exposure. If the second term in (A3) reduces to
zero, the entire quantity (A3) will estimate the average outcome with

exposure. We present 2 scenarios: 1) a correct PS model but incorrect
outcome regression model and 2) a correct outcome regression model
but incorrect PS model. In each, we describe how the second term in
(A3) reduces to zero.

First, consider the situation where the postulated PS model e(Z,b)
is correct but the postulated outcome regression model m1(Z,a1) is
not. That is e(Z,b)¼e(Z)¼E(XjZ) but m1(Z,a1) 6¼E(YjX¼1,Z). In the
event that we specify the correct model for the PS, we can substitute
e(Z) for e(Z,b) but the outcome regression model, having been mis-
specified, does not estimate E(YjX¼1,Z) and so we cannot make this
substitution between (A3) and (A4).

E

�
fX � eðZÞg

eðZÞ fYX¼1 � m1ðZ; a1Þg
�

ðA4Þ

Nonetheless, when we manipulate (A4) algebraically (A5-A8) and
invoke the exchangeability assumption (A8-A9), it reduces to zero
(E({0}*{YX¼1-m1(Z,a1)}) ¼ 0). Therefore, even if the postulated out-
come regression model is incorrect, l̂1;DRestimates E(YX¼1) and, like-
wise, l̂0;DR estimates E(YX¼0) such that the difference or ratio
estimates the average causal effect of exposure.

E

�
E

�
fX � eðZÞg

eðZÞ fYX¼1 � m1ðZ; a1ÞgYX¼1;Z

��
ðA5Þ

¼ E

�
E

�
fX � eðZÞg

eðZÞ YX¼1; Z

�
fYX¼1 � m1ðZ; a1Þg

�
ðA6Þ

¼ E

�
fEðXj YX¼1; ZÞ � eðZÞg

eðZÞ fYX¼1 � m1ðZ; a1Þg
�

ðA7Þ

¼ E

�
fEðXj ZÞ � eðZÞg

eðZÞ fYX¼1 � m1ðZ; a1Þg
�

ðA8Þ

¼ E

�
feðZÞ � eðZÞg

eðZÞ fYX¼1 � m1ðZ; a1Þg
�

ðA9Þ

Next, we consider the situation in which the outcome regression
model is correct but the PS model is not. That is
m1(Z,a1)¼E(YjX¼1,Z) but e(Z,b) 6¼e(Z) 6¼E(XjZ). In this case, the
second term in (A3) for l̂1;DRcan be rewritten as (A10). By algebraic
manipulation (A11-A13) and invoking the exchangeability assump-
tion (A13-A14), this term also reduces to zero.

E

�
fX � eðZ;bÞg

eðZ; bÞ fYX¼1 � EðY j X ¼ 1;ZÞg
�

ðA10Þ

¼ E

��
fX � eðZ;bÞg

eðZ;bÞ fYX¼1 � EðY j X ¼ 1;ZÞgX;Z
��

ðA11Þ

¼ E

�
fX � eðZ; bÞg

eðZ;bÞ E½fYX¼1 � EðY j X ¼ 1;ZÞgX; Z�
�

ðA12Þ

¼ E

�
fX � eðZ;bÞg

eðZ;bÞ fEðYX¼1j X;ZÞ � EðY j X ¼ 1;ZÞg
�

ðA13Þ

¼ E

�
fX � eðZ;bÞg

eðZ; bÞ fEðYX¼1j ZÞ � EðYX¼1j ZÞg
�

ðA14Þ

¼ E
�
fX�eðZ;bÞg

eðZ;bÞ f0g
�

¼ Eð0Þ
ðA15Þ

Thus, (A3) estimates E(YX¼1) even though the PS model was
misspecified. As before, l̂1;DRestimates E(YX¼1) and l̂0;DR esti-
mates E(YX¼0) such that the difference or ratio estimates the aver-
age causal effect of exposure.
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