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A B S T R A C T   

In recent years, extensive resources are dedicated to the development of machine learning (ML) based clinical 
prediction models for intensive care unit (ICU) patients. These models are transforming patient care into a 
collaborative human-AI task, yet prediction of patient-related events is mostly treated as a standalone goal, 
without considering clinicians’ roles, tasks or workflow in depth. We conducted a mixed methods study aimed at 
understanding clinicians’ needs and expectations from such systems, informing the design of machine learning 
based prediction models. Our findings identify several areas of focus where clinicians’ needs deviate from current 
practice, including desired prediction targets, timescales stemming from actionability requirements, and con-
cerns regarding the evaluation and trust in these algorithms. Based on our findings, we suggest several design 
implications for ML-based prediction tools in the ICU.   

1. Introduction 

The intensive care unit (ICU) provides specialized care for critically 
ill patients with life-threatening conditions. Decisions are made 
constantly based on an ongoing flow of physiological readings and 
ancillary patient data. The abundance of information and rising work-
loads are often overwhelming for the clinical staff, burdening their de-
cision making processes. With recent advances in the field of machine 
learning (ML), there has been growing interest in exploiting the wealth 
of ICU data for tasks such as prediction and decision support [1–5]. 

Current work in ML for the ICU mostly focuses on two types of tasks: 
The first is predicting a deterioration in a patient’s health, commonly 
implemented as an alarm notifying the clinical staff before a critical 
event [6,3,7,4,8]. This task is considered particularly interesting due to 
its potential for improving patient care and saving lives. It was also re-
ported as the ML use-case ICU clinicians are most likely to adopt [9]. The 
second prominent line of work applying ML in the ICU setting focuses on 
predicting patient vital signs such as heart rate, respiration, blood 
pressure and more. Such vital signs are considered to be the main win-
dow onto what clinicians generally denote as “patient state” 1 [10–16]. 
Unfortunately, recent attempts for deployment of such prediction 

systems did not lead to better outcomes in any of the reviewed perfor-
mance measures [17,18]. It seems these failures are not strictly caused 
by algorithmic malfunctions, but result from operational and human 
constraints [17]. However, despite the extensive research and substan-
tial resources invested in the task of real-time ICU prediction (over 970 
articles and counting [6]), to the best of our knowledge no prior work 
investigated clinicians’ requirements from ICU prediction models. 

Therefore, in order to better inform the design of ML-based predic-
tion tools that fit clinicians’ workflow in the ICU, we conducted a mixed 
methods study that included both open-ended interviews and quanti-
tative tasks with ICU staff across four ICU wards in three different hos-
pitals. We held exploratory interviews focused on clinicians’ needs in the 
context of ICU prediction systems. These were followed by quantitative 
tasks aimed at evaluating the perceived clinical relevance of predictions 
that could be obtained from machine learning algorithms. Our study 
revealed several insights that can facilitate the design of clinically useful 
ICU prediction systems. In particular, some of our findings suggest ap-
proaches that differ from current practice. 

* Corresponding author. 
E-mail address: briany202@gmail.com (B. Eini-Porat).   

1 We note that patient state is a widely used yet loosely defined term, referring to the underlying patient health, often assessed by clinicians based on the patient’s 
vital signs. 
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2. Related work 

Due to the challenges in uptake and sustained use of ML systems in 
healthcare [19], previous work has investigated the needs of their 
clinician end-users [42]. Tonekaboni et al. [20] conducted a target 
stakeholder study for the purpose of identifying explainability chal-
lenges in ML for healthcare in general, and proposed strategies for 
enhancing trust by focusing on clinicians’ explainability needs. Some 
studies focus on user-centered design meant to support specific patient 
care scenarios [21], and others strive to co-design AI based decision 
support tools involving clinicians [22]. Yet, none of these works focus on 
ML-based prediction tools for the ICU setting. 

More generally, despite the extensive research and substantial re-
sources invested in the real-time ICU prediction task (over 970 articles 
[6]), to the best of our knowledge, no prior works have investigated 
clinicians’ requirements from ICU prediction models. Some pilot de-
ployments of such prediction systems to the ICU or emergency depart-
ment were extensively documented and include deployment pain points 
such as the need to adapt to current workflows [23,24], or evaluated 
their usability post-hoc[43]. 

Clinicians needs in terms of current monitoring (as opposed to future 
predictions) and workflows use of information in the ICU are the subject 
of multiple studies [25–27,9,28,41]. Among their findings are the 
intuitiveness of vital signs monitoring, as opposed to the difficulty of 
tracking other kinds of information. Moreover, alarm fatigue was 
identified as one of the major threats to patient safety. However, these 
works focus on deployment and interface design for monitoring and 
information systems, rather than ML-based prediction tools. 

A survey study by Poncette et al. [27] focused on the satisfaction of 
ICU staff with current patient monitoring and suggestions for future 
improvements, and included questions regarding future incorporation of 
AI-driven tools. Among several possible use cases for AI in the ICU, 
participants indicated they would use AI-based tools to predict compli-
cations and detect increased risk of mortality. This paper presents areas 
of focus for development of AI-based tools, but does not specify any 
algorithmic requirements. 

While we believe interface and explainability requirements are 

crucial for successful deployment, we also believe that functional re-
quirements must be addressed. Therefore, our work considers the un-
derlying algorithms as a crucial part of the design space, particularly 
focusing on the ICU setting, in a way that to the best of our knowledge 
has not yet been addressed by prior work. 

3. Methods 

To gain a better understanding of the challenges clinicians face in the 
ICU and the potential of machine learning systems to support their work, 
we conducted a mixed-methods study involving clinicians from four ICU 
wards across three hospitals. The study comprised of semi-structured 
interviews and quantitative tasks. The interviews were designed to un-
derstand clinicians’ thought processes and elicit their considerations, in 
order to asses their requirements from ML tools predicting patients’ 
health state in the ICU. We further asked the participants to complete 
tasks designed to evaluate specific quantitative aspects of the clinical 
relevance of predictions that could be obtained from machine learning 
algorithms. The study was approved by the Technion institutional  re-
view board. 

3.1. Participants and recruitment 

In the course of this study we worked with ICU clinicians including 
physicians and nurses from both adult and pediatric ICUs in 3 different 
hospitals. Our interviewees represented a diverse sample including 
nurses, interns, residents, fellows, attending senior physicians and two 
departments chiefs; their mean work experience was 15 years with a 
range deviation of 1 to 44 years; see Table 1. All of the participants 
completed both parts of the study. Participants self-reported a mean 
level of familiarity with statistics (3±0.9) and machine learning (2±0.6) 
on a 5-point Likert scale (1 - Heard of it and 5 - Expert). We recruited 
participants using a snowball sampling approach, starting from clini-
cians in the hospital in which one of the authors practices as a clinician. 
The recruitment of potential interviewees continued until we have 
reached saturation of new concepts in the exploratory interviews, 
meaning no new concepts were revealed in the last three interviews. 
Potential participants received information about the study and its re-
quirements. Participants were compensated with coffee vouchers (worth 
∼ 8$) to thank them for their time. 

3.2. Data collection 

Interviews were conducted by the first author in one-on-one sessions, 
with duration ranging from 40 to 100 min depending on participant 
cooperation and availability. The interviews were recorded and tran-
scribed following participant consent, with the exception of three in-
terviews which were not recorded due to participants’ refusal; these 
were documented using notes. Two of the interviews were conducted 
remotely due to Covid-19 restrictions. A fundamental principle of the 
study design in both its qualitative and quantitative parts was starting 
with open-ended questions and moving toward increasingly structured 
questions as the sessions progressed. We made this choice in order to 

Table 1 
Participant details, including years of experience.  

ID Role Experience (Years) ICU type 

P1 Physician 5 Adult 
P2 Physician 30 Adult 
P3 Physician 17 Adult 
P4 Physician 1 Pediatric 
P5 Physician 2 Pediatric 
P6 Physician 25 Adult 
P7 Physician 1 Adult 
P8 Physician 44 Pediatric 
P9 Physician 20 Pediatric 
N1 Nurse 11 Pediatric 
N2 Nurse 16 Pediatric 
N3 Nurse 10 Adult 
N4 Nurse 10 Pediatric  

Fig. 1. Example patient case. This case is considered less severe in the ICU.  
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reduce the possibility of introducing our own biases with leading 
questions. 

3.2.1. Exploratory interviews 
Prior to the interviews, we generated 4 scenarios of ICU cases 

depicting standard ICU admissions with varying severity (cases are 
detailed in A). Participants were presented with 2–3 randomly selected 
ICU patient cases. Patient cases included basic information: presenting 
symptoms, age, gender, vital signs (heart rate, blood pressure, SpO2, 
respiratory rate) and an illustration; see Fig. 1. In order to allow both 
pediatric and adult intensivists to participate and contemplate familiar 
scenarios, patient cases focused on young adults that are treated by both 
clinician groups. 

The purpose of the presented cases was to ground the discussion on 
current workflows, identify important considerations and ease the 
transition towards a discussion of envisioned prediction systems. To 
guide the semi-structured interview, participants were asked the 
following questions per case: (1) What would you check about this patient? 
(2) What are the next steps? After discussing current workflows, we 
introduced the notion of prediction systems in this context: (3) Say we 
have a system that can make predictions with respect to this patient, what 
would be helpful to know? why? (4) What time frame should be used for a 
prediction update? If the subject was not brought up naturally in the 
conversation we also asked (5) Would you prefer predictions in the form of 
future events or future patient state? We continued to discuss the inte-
gration of the desired predictions into current ICU workflows. 

We developed the initial interview guide with the goal of under-
standing clinicians’ needs from prediction systems, as well as assessing 
the compatibility of these needs with current practices for ML-based 
prediction model development. To allow perceived needs to spontane-
ously come up in the conversation, we kept our questions open-ended. 
We conducted two pilot interviews following which the interview 
guide was refined: the number of patient cases presented was reduced, 
and question (5) was added to complement question (3). 

3.2.2. Quantitative study protocol 
After completing the semi-structured interviews, participants pre-

formed a series of four tasks designed to measure specific aspects of 
perceived utility from observing different vital signs predictions. The 

decision to focus on vital signs for the quantitative part was made a 
priori, as clinicians tend to describe and track patients’ state using vital 
signs. Furthermore, any reasonable ML model used in a real-time ca-
pacity in the ICU setting is likely to use vital signs as an important 
building block. The tasks were presented in the following order: 

T1: Identifying important events The quantitative session started with a 
relatively neutral think-aloud like task [29] which allows the subjects to 
express their thoughts freely. In this task, the participants were asked to 
identify (and if possible rank) important events and/or time intervals in 
sample vital sign trajectories presented to them, and mark them as 
important or very important using a simple interface. Specifically, they 
received the following instructions - Mark segments of this signal 
describing predicted events you be made aware of or be informed about while 
caring for a patient (if such exist). You may choose to mark them as 
important or very important if you can. Please guide us through your thought 
process and verbalize your thoughts. 

We used vital sign data from the MIMIC-III Wavefrom Database [30], 
which contains thousands of vital signs time series collected from 
bedside patient monitors in intensive care units (ICUs). The sampled 
vital signs were aggregated at 5 min time steps and reflect the mean 
value within the 5-min interval. This aggregation enables the inspection 
of long trajectories (hours) during which interesting events are likely to 
occur. 

Specifically, participants were presented with at least four randomly 
sampled vital signs trajectories of adult patients from the MIMIC-III 
Wavefrom Database, infused with a few synthetic events (including 
exceeding normal range and sudden spikes), while making sure they 
mostly follow the original data; see Fig. 2 for an example. The vital signs 
we used were the trajectories of mean atrial blood pressure (MAP), heart 
rate (HR), arterial oxygen saturation (SpO2) and respiratory rate 
(RESP). For each vital sign, the patient’s age and gender were presented 
to provide context. Participants were told that these patients were 
admitted to the ICU and are currently in a hospital bed, but with no 
further context. We note that in the ICU, clinicians would have at their 
disposal additional information and more specific context such as pa-
tient comorbidities, which might change their actual preferences. 
However, accounting for multiple possible contexts, even brief patient 
histories as in T1, would greatly increase the variety of patient cases we 
must present to the participants, which in turn would have required a 

Fig. 2. Example of an importance heat map over blood pressure values given by one of the participants. Participants were provided with such trajectories and context 
and were asked to mark important or very important segments. In this figure, three segments were marked as very important and one was marked as important by the 
participant. 
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great amount of time resources from the clinicians involved, exceeding 
their limited availability for our study. 

Depending on the quality of verbalization, participants were asked 
questions regarding their actions and motives. These probing questions 
were asked during the execution as a form of coaching - reminding 

participants to verbalize their thoughts when they became silent: Why 
did you mark this segment? Is this segment more important than the previous 
one? Why?. This task preceded the following scoring task in order to 
avoid bias and to encourage original thought. 

T2: Interval Scoring The next task required scoring the significance of 
observing certain prediction values of vitals for a hypothetical patient. 
This task was designed to derive a quantitative formulation of the 
clinical relevance of the absolute nominal values of predicted vitals. This 
task was preformed with respect to a certain patient, so the evaluation 
relates to a more familiar use case. The scenario and vitals matched the 
previous task. Specifically, participants were asked to score intervals of 
hypothetically predicted vital signs values according to the attention 
required for monitoring the patient, see Fig. 3. Intervals were displayed 
together to encourage relative comparisons of importance of the infor-
mation. After each scoring task the subjects were asked questions 
regarding their scores (Why did you score X higher than Y?). 

T3: Anchoring This task is identical to the Interval Scoring task T2 
with one key modification – displaying a previous measurement along 
with the patient’s basic information. The anchoring task captures a 
certain aspect of context. It reflects on the change in clinical relevance 
attributed to a prediction given additional information regarding pre-
vious measurements. Two versions of this task were used: one displaying 
a measurement from the previous hour and another displaying two 
measurements, from one hour and from 30 min prior. Each of the two 
versions was completed by half of the participants. We note that the two 
measurements variation was added after the first five interviews, 
following early results. Its purpose was to evaluate deviations from 
trends. 

T4: Pure Trend The pure trend task aimed to measure the importance 
of a trajectory’s trend separately from the absolute values of the vital 
sign. Participants were presented with two hour trajectories of the four 
vital signs (HR, MAP, SpO2 and RESP) and asked to score the level of 
importance they ascribe to them; see Fig. 4. In order to disentangle the 
effect of trend from that of nominal values, trajectories remained within 
each vital’s normal range. We note this task was also added after the first 
five interviews, following early results. 

3.3. Data analysis 

We analyzed the data using a thematic approach. The interview data 
was coded using open coding analysis [31]. As a first step, the first 
author reviewed three transcripts to generate an initial coding scheme. It 
was then discussed and revised by the entire research team who 
reviewed suggested codes with the corresponding examples of partici-
pant responses. Then, the remainder of the interviews were coded, 
allowing for new codes to be developed, reviewed and finalised by the 
team (e.g. “predict trend”, “Abnormal attributes”, see E). An external 
coder was invited to code a third of the transcripts, initially coding two 
transcripts independently. The coders discussed the results, discussing 

Fig. 3. Heart rate interval scoring example. Participants were presented with the intervals above and received the following instructions: Please score on a scale of 
1–10 the significance of knowing the next vital measurement for a measurement within the following intervals. 

Fig. 4. Example mean blood pressure trajectory. The trajectory is described 
over the course of two hours without exceeding normal range. The number next 
to each trajectory refers to its slope – participants were presented with the 
trajectories without this slope notation. 

Fig. 5. The core themes that emerged from the study. Within three categories 
(inner ring), 8 higher-level themes (middle ring) and 9 sub-themes were spec-
ified (outer ring) to identify the algorithmic requirements from ICU prediction 
models in the view of intensive care staff. Every category has a different color, 
with paler shades for the lower level themes. 
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the few disagreements that emerged, which were mostly related to the 
level of granularity of the codes. Then, they proceeded to code the 
remaining transcripts according to the coding scheme and reviewed the 
codes together yielding inter-rater reliability of 82%. The few dis-
agreements were resolved by discussion. Further analyses were done 
using affinity diagramming [32], whereby the lead author began 
merging codes into initial themes. All authors iteratively clustered data 
into themes (e.g. “vital signs trajectory”, “high frequency predictions”). 
The emerging themes were reviewed and revised over the course of 
several sessions. These themes had been sorted to create higher-level 
themes or categories, see Fig. 5. Thus, at the end of this process, we 
had identified design implications as well as the specific themes asso-
ciated with each. We further reviewed participants’ responses to the 
quantitative tasks and plotted them in aggregation to identify recurring 
themes. 

4. Results 

4.1. Findings from the exploratory interviews 

The complexity of the ICU environment and its associated diagnostic 
and treatment challenges are apparent from the exploratory interviews. 
Several core concepts and insights emerged consistently in the in-
terviews; we focus here on those that pertain to predictions in the ICU 
settings and are novel. 

4.1.1. Critical events vs. patient’s trajectory predictions 
Many participants emphasized that while their main goal remains 

averting critical events and improving treatment outcomes, they would 
rather have predictions regarding patients’ future vital signs trajectory 
(representing the patient physiological state) or general patient state, 
and use these to guide clinical decisions. Moreover, the specific vital sign 
value appears to be less important than the change/trend from the 
previous step or even the patients’ trajectory:“I want to see change in 
pulse – I see it going up 112, 116, 120, 130, 150. A system should monitor 
difference, trend” -P9. The clinical relevance of the trajectory should also 
be taken into account as it is often discussed in this context: “Would like 
to see a physiological-well-being graph” -P2. Naturally, deterioration was 
mentioned more often than recovery and is more important to identi-
fy:“I don’t care as much what would be the rate of the recovery” -P1. 

Participants also noted that subtle trends are more likely to go un-
noticed, especially if the ward is busy, and thus trajectory prediction 
could make these changes more apparent and relieve some of the 
cognitive load associated with patient state tracking. Moreover, partic-
ipants also expressed their interest in counterfactual predictions, given 
specific alternative interventions in the same abstracted context of trend 
rather than the specific value. Trajectory prediction was raised by some 
of the clinicians as a means to allows less aggressive interventions at an 
earlier stage, where the error cost of unnecessary intervention is low. For 
instance, participants noted that “if the patient looks fine at the moment, 
but gets a bad prediction, many won’t agree to treat aggressively now. I can’t 
send this patient to surgery” -N4, or that they “Can just administer antibi-
otics.. preventive medicine is best.” -P5. 

4.1.2. Prediction timescales 
Any model for continuous prediction has it own update rate or pre-

diction horizon timescale. Ideally, predicting according to the progres-
sion rate of a specific clinical condition would allow appropriate 
decision support. However, there are countless conditions and diseases; 
furthermore, multiple conditions can manifest in a single patient. 
Nevertheless, our study participants identified two main prediction 
timescales, each with a different role. The first timescale is 1–3 days and 
is meant for high-level planning of care. The second timescale is less 
than one hour, and is meant to support immediate and urgent decision 
making for unstable patients in need of acute care. These timescales 
were revealed either by discussing different patient cases or as a specific 

requirement: “ I would like this long-term (3 days) prediction. In the ICU we 
don’t look so far ahead, but in medicine, prevention is most effective for 
saving lives […] In context of acute medicine, of course I would like short 
terms predictions” -P5, “It would be helpful to get predictions in a 15 min 
interval because it’s difficult to notice subtle changes” -P6. The state of 
unstable patients in acute care rapidly changes and requires constant 
decision making. According to the more experienced clinicians, frequent 
re-evaluations and decision points are considered as best practice:“S-
pecifically in the ICU, we make decisions all the time, the best practice is to 
keep the time between decision points as short as possible. It is possible I have 
a certain impression about a patient and re-evaluate minutes later. That way 
you can fix easily” -P8. 

4.1.3. Prioritizing care 
Although we presented prediction systems in this study in the 

context of a single patient, participants repeatedly emphasized that a 
main added value of such prediction systems would be aiding them in 
prioritizing care. Clinicians seem to be quite confident in their ability to 
provide an adequate level of care for a single patient. However, in large 
or busy ICU wards, or during night shifts when clinical staffing is shorter 
and includes less experienced staff, the cognitive workload of each 
clinician increases. It might be easier to miss a deterioration in patient’s 
condition: “One of the main issues in large ICUs is prioritizing […] I can deal 
with a single patient […] But if I am treating this one patient that looked bad, 
it is very easy to get sucked into the treatment and miss another patient […] At 
2:00AM there is no one else that sees all the beds at once. Who is getting better 
and who is getting worse? When I am focused on a single patient I might be 
biased” -P5, “If I have 200 patients, I would like to know which are the top- 
10 patients that we need to focus on the most […] If no one is looking at the 
patient in room 7 then they might not notice the change until it is too late” 
-P2. These claims were made both by experienced clinicians and by 
residents. 

4.1.4. Tell me something I don’t know 
Participants have also mentioned the significant cognitive overload 

caused by the multiple monitoring systems already in place and their 
corresponding alarms. Any system that is deployed in an ICU setting 
takes its cognitive toll and should therefore have a clear added value in 
terms of novelty and actionability: “Our staff doesn’t like too many sys-
tems. Each added system is another screen to monitor, another alarm to listen 
for. If you add a system, it should have practical added value – tell you 
something you don’ know and can act accordingly” -N3. This element of 
novelty or surprise also refers specifically to trajectory predictions: “I 
can see where this patient is going and understand that it [the trajectory] 
deviates from the expected trajectory” -P6. While some participants prefer 
having an abundance of information with respect to the prediction, 
including explanations (possible diagnosis, event probabilities), others 
argue that predictions should only indicate that something is wrong, 
encouraging the clinicians to look for a cause for deterioration and 
possibly facilitate the detection of human errors. They further claim 
detailed predictions would hinder the clinical staff, especially if the 
explanations provided are not complete. 

4.2. Estimating clinical utility 

In this section, we look into the quantitative aspects of perceived 
clinical utility of vital sign prediction. Investigating the utility is espe-
cially relevant given the clinician’s reduced reported interest in pre-
diction of only absolute measurements: clinicians seem more interested 
in the overall trajectory and patient trend according to their perception 
of severity rather than the momentary values of the vital sign. In their 
view, clinical utility is directly related to the perceived clinical severity 
(Examples in B); we wish to quantify this utility in the following tasks. 

When presented with examples of predicted vital sign trajectories, 
clinicians consistently marked areas that they perceived as reflecting 
two aspects: clinical severity, and surprise, with both aspects depending 
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on context. Clinical severity is determined by the absolute values and the 
trend of the presented vital sign. Surprise depends on the deviation from 
an expected trend given previous values. 

Participants often mentioned the difficulty of assessing the true 
importance of predictions in specific areas without further context, as 
context could affect the expected behavior. They also sometimes strug-
gled to differentiate between ‘important’ and ‘very important’ segments. 

Nevertheless, three components of signal behavior were consistently 
identified as important for all signals: general trend, sudden deviations 
from the trend and severity of absolute values as compared to the normal 
ranges. Fig. 2 shows an example from one of the participants: this 
participant marked as important sudden spikes in blood pressure, rising 
of blood pressure, and steady abnormal values (for more examples see 
B). We note that participants’ tolerance to deviations from the normal 

Fig. 6. Task T1. Example of an importance heat map over heart rate values given by one of the participants, including the three main components for vital prediction: 
deviation from clinical norm, overall trend, and surprising deviations from said trend. 

Fig. 7. Clinical importance of absolute values per vital sign. The widely-accepted clinical normal range is marked in red dashed line. Mean values are in dark blue, 
while light blue lines show the rankings of individual participants. 
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range varied across signals: participants were willing to tolerate a wider 
range of values and steeper changes when it came to respiration rate 
compared to blood pressure and heart rate. 

When asked to explain their choices, participants provided different 
takes on clinical severity. High or low absolute values are important as 
they describe clinically severe states - a patient with a predicted heart 
rate of 180 BPM is probably in danger. General trend hints at clinical 
severity even if the absolute values are not severe just yet – the clinical 
staff could be missing a deterioration. As for sudden deviations from the 
trend, participants provided two different explanations for their 

importance: One is that a sudden change could be a symptom of a 
clinical event. The other is the element of surprise, which by definition is 
less likely to be predicted by the clinical staff and therefore the pre-
diction of a surprising event gives them important information. In 
addition, the importance of both general trend and deviations from it 
clearly interact with values exceeding the normal range. For example, 
the same slope of heart rate trajectory is more important when the ab-
solute values are also concerning. An example of this is shown in Fig. 6: 
here, the participant marked the same trend slope as more important as 
it progressed toward bad absolute values. 

Fig. 8. Plots (a) and (b) depict scenarios in which an anchor (orange dashed line) is located beyond the normal range in which participants expressed concern. In plot 
(d) anchors are within normal range and in plot (c) they are borderline. In plots (a) and (b), the curves are importance elevated but also wider. In plot (c), the curve is 
elevated but similar to baseline. In plot (d) it is similar to the baseline. 

Fig. 9. Ranking of importance of mean atrial pressure and heart rate trajectory slopes. Similarly to Fig. 7, mean values are in dark blue, while light blue lines show 
the rankings of individual participants. 
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In Fig. 7 we can see the clinicians’ ranking of absolute values ac-
cording to their clinical importance; the rankings yield a collection of 
asymmetric curves with sharper slopes in areas where the signal exceeds 
or falls short of clinically acceptable normal range. For example, when 
observing participants’ rankings for respiration rate values, we can see 
that values within the clinical normal accepted range (12–15 breaths) 
receive low importance. When exceeding normal range toward low 

values (signaling an impending respiratory failure), importance increase 
rapidly, yet when exceeding normal range toward high values (signaling 
increased respiratory distress, but not failure) the importance curve 
increases at a slower pace. For each direction of exceeding norm, it 
appears as an S-shaped curve, with moderate slope in the normal range 
interval, then a steep rise, and moderate slope again. Note that SpO2 can 
only fall below the normal range, whereas the three other signals can 

Fig. A.10. For each of the patient case scenarios additional context was presented, including age, gender, and basic vital signs.  

Fig. B.11. Examples of heart rate importance heatmaps marked by participants. blue (a) reflects sudden changes and interaction between trend and values. In (b) we 
observe the importance of trend, with a sudden peak marked as a very important event, and again trend is considered worse when we get to clinically severe values. 
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reach values both above and below normal. 
We note that participants expressed concern only when values are 

well beyond the normal range threshold, suggesting that the range of 
acceptable values in the ICU is wider than the normal range as it is 
currently defined in the medical literature. 

However, the exact threshold of concern seems to change according 
to previous measurements “anchoring” the observations: the results are 
presented in Fig. 8: Previous measurements that exceed normal range 
result in a greater baseline concern for prediction in the next step, even 
when it manifests within the norm. However, participants tolerated a 
wider range values when they were closer to the previous values. Pre-
vious measurements or trend within normal range do not change the 
curve. For example, in the MAP signal, when the previous measurement 
is 120 mmHg (Fig. 8(b)), which is well beyond clinical norm and within 
the value range that is considered concerning in task T2 (see Fig. 7), the 
curve is elevated and wider than the baseline. But when previous mea-
surements are within clinical norm the curve is identical to the baseline 

(Fig. 8(c)). In general, having a previous measurement within clinical 
norm resulted in the same curve as in T2; for more examples see C. 

When examining participants’ view of the trend, it seems there is a 
non-linear increase in importance as vitals’ slope becomes steeper. For 
example when dealing with MAP (Fig. 4(a)), the difference between 
slope − 2 to − 1 could not be described by the same straight line as the 
difference between slope − 1 to 0. The exact behavior is slightly different 
across signals, but the general shape remains the same; see also Fig. D.16 
in the Appendix. However, there is some notable variability in ranking 
among participants. While none of the participants expressed concern 
about the “no change” option, participants were divided in their re-
sponses to steeper trajectories. For each signal, about half of the par-
ticipants assigned them a high importance score and the other half gave 
low-to-middle scores. This phenomenon occurred across experience 
level and profession. Furthermore, even participants who reported they 
would prefer predictions of patient trend assigned such lower scores 
occasionally. To conclude, it seems that pure trend is important by itself, 

Fig. B.12. Examples of respiratory rate importance heatmaps marked by participants. (c) Shows that elevated values are important, final trend is worse due to the 
absolute values. (d) Depicts the importance of sudden change and its amplitude. 

Fig. B.13. Examples of mean atrial pressure importance heatmaps marked by participants. It is apparent from (e) that the participant tolerates severe values given 
the patient history. (f) Depicts the importance of trend vs. sudden deviation from trend. 

Fig. B.14. Task T1: Examples of O2 sturation importance heatmaps marked by participants. (g) and (h) are an example of the variability in marking.  
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Fig. C.15. Change in importance ranking when previous measurements are within clinical norm. SpO2 previous measurements are borderline, deviating from 
clinical norm but remaining in intervals of medium concern as measured in task T2. Figure (d) is slightly more severe than (c) as it depicts a steeper deterioration. 

Fig. D.16. Ranking of importance of mean atrial pressure and heart rate trajectory slopes. Mean values are in dark blue, while light blue lines show the rankings of 
individual participants. 
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but less than absolute values. (See Fig. 9). 

5. Discussion 

Our work has revealed clinician preferences regrading predictions 
from ML-based systems, highlighting a need for predicting patient tra-
jectories and assistance in prioritizing patient care. The participants 
posed two possible aims for predictions systems in the ICU, corre-
sponding to two different timescales: a days-long timescale for high- 
level care planning, and a short (< 1 hour) timescale for frequent re- 
evaluations of care. In all cases participants emphasized the impor-
tance of novel, actionable, predictions over successful predictions of 
non-surprising occurrences. Finally, quantitative tasks revealed a non- 
linear utility function for different predictions, valuing predictions of 
deviations from clinical norm, overall trend, and deviations from said 
trend. 

5.1. Design implications and requirements 

Predicting patient trajectories rather than critical events. While the 
majority of deployment attempts of ML-based prediction systems to the 
ICU focus on predicting specific critical events (as an alarm system) 
[33,17], many of the study’s participants showed a preference towards 
displaying predictions differently. It was clear from the interviews that 
the prediction of stand-alone clinical events remains a source of interest. 
Yet, our study also suggests possible difficulties in clinicians’ perceived 
ability to act preemptively and decisively based on such predictions 
alone (see 4.1.1). Since predictions of acute events may never materi-
alize, some clinicians would rather defer aggressive interventions in 
response to what they view as uncertain, possibly black-box, pre-
dictions. Notably, several clinicians stated that they see utility in 
building models predicting interventions (as proposed by Suresh et al. 
[34]), with a preference for predicting less aggressive interventions such 
as antibiotics administration or other routine procedures. Clinicians 
indicated that they are more likely to act upon predictions when they 
consider the derived actions to be of relatively low risk. This preference 
for predictions with low-stakes implications might indicate a lack of 
trust in clinicians’ perception of the possibilities of prediction systems in 
general, as well as a reluctance to engage with highly uncertain 
predictions. 

An intriguing observation is that clinicians seem to be in interested in 
more than just events. As described in Section 4.1.1, many prefer to 
observe a prediction for the patients’ future trend, i.e. prefer predictions 
of the future trajectory over single point predictions. Such prediction 
models were proposed for example by Clifton et al. [11], Schulam and 
Saria [12], Colopy et al. [15], Alaa and van der Schaar [35], Cheng et al. 
[16]. Displaying continuous predictions rather than just alerting about 
upcoming critical events may uncover subtle changes in patients’ health 
and raise the clinicians awareness to such fluctuations. This in turn al-
lows for preemptive, repeated clinical evaluations and proactive, less 
aggressive interventions, compared to those needed in case of a critical 
deterioration event. Therefore, the preference for trajectory prediction 
seems to again reflect a preference for a system enabling subtler clinical 
interventions, in line with the preferences stated above for predicting 
milder, yet more common, events compared to prediction of rare, acute 
events. Towards this end, we believe that displaying future trajectory 
information without the need to read specific values might ease the 
processing of this additional information and enable proactive action. 
We also note that current work in medical informatics aims to relieve 
cognitive load in clinical decision-making by displaying patient data and 
organizing it into easy to understand temporal resolutions [36,37]. 
Displaying trajectories aligns with this approach and allows better un-
derstanding of patient state as an evolving process. 

Model Evaluation and Optimization within Context. A prominent issue 
that repeatedly came up both in the qualitative and quantitative in-
terviews is that the utility and interest in the predictions is highly 

context-dependent. This is true since even patients who are severe 
enough to be admitted to the ICU remain relatively stable most of the 
time. Detection of a sudden drop in heart rate is more important than 
correctly predicting “no change” multiple times. Thus, standard evalu-
ation metrics provide an insufficient way of assessing the utility of the 
prediction for actual clinical practice. 

What emerges from the interviews is that the perceived importance 
of a prediction depends on a combination of three factors: (i) deviation 
from clinical norm, (ii) overall trend, and (iii) surprising deviations from 
said trend. 

For deviation from clinical norm, Task T2 (subSection 3.2.2) yielded 
the importance curves in Fig. 7 which clearly demonstrate that the dif-
ference between values is not linear, whereas standard evaluation 
metrics such as squared loss treat them as equal. These curves could be 
directly utilized in the construction of new evaluation metrics designed 
to account for actual clinical utility. We note that the curves align with 
the notion of subjective expected utility from classic decision theory 
[38]. The expected utility at a certain point depends on a subjective 
probability weight which determines whether an event will occur: 
w(yt)⋅u, where the factors u and w correspond to the cost of an adverse 
event and the subjective weights model to the amount of attention given 
to each event yt, respectively. Therefore, drawing on this theory in 
conjunction with empirical studies can further support the imple-
mentation of more informative evaluation metrics. 

Tasks T3 and T4 (Figs. 2 and 8 and B and C) reflect the weight given 
by clinicians to the relation between consecutive values, thus indicating 
the weight of overall trend (ii) and surprise (iii) in the clinical utility of 
predictions. Again, trend is mostly disregarded by current evaluation 
metrics, but in reality, previous observations create certain expectations 
regarding consequent measurements. Trivial predictions (e.g. “no 
change”) seem to be less interesting even if they indicate a clinically 
severe state. Furthermore, a steep trend or a sudden trend deviation in 
vital signs often imply a change in the patient’s general health. The 
curves in Figs. 2 and 8 can be used to formulate new evaluation mea-
sures that capture the clinical utility of a prediction with respect to 
previous observations and the overall vital sign trend. 

Prediction Timescales. Our findings suggest two distinct prediction 
timescales (see 4.1.2), each serving a different purpose: One is a 1–3 day 
timescale, and the second is less than an hour. The former is meant to 
support high-level care planning, while the latter is meant to support 
frequent re-evaluations and decision points required in the ICU. Since 
ICU prediction algorithms are designed as decision support instruments, 
they should comply with the current rate of decision making. While 
some works do predict for the slow timescale [6], to the best of our 
knowledge, there are only a few works that predict for less than an hour 
[39,11,40], highlighting a currently unmet need in the field. 

Prioritization of Care. Finally, our study reveals a possible avenue for 
using ML to improve ICU patient care that differs from most of current 
practice: instead of optimizing predictions for a single patient, solving 
an attention prioritization problem (subSection 4.1.3). Predicting for the 
single patient does not account for an ICU’s limited resources, where 
clinical staff typically must attend to multiple patients at the same time. 
Night shifts or extremely busy shifts are the most vulnerable situations; 
their common pain point being the challenge of “who to attend to first?”. 
We note that any algorithms addressing the prioritization problem will 
need to take data of the entire ward as input rather than a single pa-
tient’s data. However, prioritization in the ICU is not merely based on 
clinical severity, but on actionability considerations and resource 
management, mostly in terms of clinical staff attention: A severe but 
stable patient might require less attention than a less severe patient that 
is quickly deteriorating. This presents an opportunity to design a pri-
oritization of care prediction framework that takes into account other 
patients in the ICU. Such a framework could relieve the cognitive 
workload of clinicians caring for multiple patients simultaneously [33]. 
The output of prioritization algorithms could be integrated to existing 
systems such as the central EMR display, which displays patient vitals in 
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the nurses station. We note that since our study questions revolved 
around prediction systems addressing one patient at a time, further 
research is needed to fully understand the considerations involved in 
prediction for ICU prioritizing. 

Our focus in this work was the algorithmic requirements from pre-
diction models as they relate to the circumstances of its use. This anal-
ysis yielded at least two model schemes with two different aims (bedside 
model per patient, and an ICU-ward level model for prioritizing care). 
Since model integration into EHR systems and display considerations 
first depend on the final objective for its use, it was not studied in depth 
at this stage and should be the subject for further research. 

5.2. Limitations 

One limitation of this study is focusing on young adult patients with 
no comorbidities as the cases, and using a fixed narrow context for the 
quantitative tasks, while in reality clinicians would have had more in-
formation. Different contexts, such as age or comorbidities, could affect 
the results, as well as ongoing treatments. While we have touched on the 
issue of context in task T3, accounting for all of the above sources of 
variation would have required us to present to participants a much 
wider array of cases. This unfortunately was unrealistic given the time 
constraints of the clinicians who volunteered for the study. Moreover, 
the surprise aspect is only partially addressed by task T3, and it was not 
directly quantified in this study. Surprise also depends on context; it 
could be expressed as an unexpected sudden drop in a vital sign value, 
but also as a vital sign not improving despite a given treatment. This 
should be the subject of future work. 

Additionally, trend was quantified in this study. While it was 
emphasized in the interviews and task T1, task T4 reflected the vari-
ability of clinicians’ views on the subject. We witnessed the entangle-
ment of trend and absolute values in task T1 (see Fig. 6). Since task T4 
displayed trajectories which do not exceed normal range, it is possible 
that clinicians could not separate the meaning of trend alone. Some 
clinicians specifically explained the low importance score they gave to 
some trajectories by referring to the value ending the trajectory. 

Finally, sample size and diversity: we interviewed 13 people; while 
the themes that came up saturated after ∼ 10 interview, the sample size 
makes it difficult to draw statistical conclusions, for example regarding 
the preferences of nurses vs. physicians, or preferences according to 
years of experience. 

5.3. Conclusions 

The intensive care environment is cognitively challenging, as 

clinicians are required to integrate vast amounts of information to assess 
and predict current and future patient states. For exactly these reasons, 
the ICU carries great potential for machine learning-based prediction 
models. Using a mixed-methods, interview-based study we explored the 
unique requirements of ICU clinicians from prediction systems in order 
to support a much needed user-centered design at the algorithmic level. 
Our findings highlight the types and properties of predictions clinicians 
value, the optimal timescales of such predictions, and uncover unmet 
needs regarding prioritization of care. Following these requirements, we 
propose ML practitioners spend more effort using prediction objectives 
which take into account patients’ trajectory rather than events, allowing 
for less aggressive, preemptive interventions. 

A recurring emerging theme, both from qualitative and quantitative 
evaluations, is that the perceived utility of models is context dependent, 
requiring integration of patient characteristics, short and medium term 
history, and ongoing clinical tasks. In a nutshell, the already cognitively- 
taxed clinicians value models that are actionable and create new 
knowledge or insights: “tell me something interesting that I don’t 
know”. 

Finally, our results point the way to several directions for future 
research: The first is constructing evaluation metrics and loss functions 
for ICU prediction models which build on the derived utility functions. 
The second direction would be conducting another user study designed 
for display and interface planning for each of the new possible frame-
works that came up in this study. Finally, we believe further research is 
needed to understand clinicians needs in care prioritization, moving 
beyond the single patient cases we used here and taking into account the 
entire patient population on in an ICU unit at a given time. 
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Appendix A. Patient cases 

In Fig. A.10 we present the ICU patient cases devised by our team, which includes an experienced ICU clinician. For each interview, we randomly 
selected 2–3 cases below to lead the interview. These are standard ICU scenarios with varying degrees of severity. 

Appendix B. T1: Identifying important events - extended 

Additional examples for task T1 displayed in Fig. B.11. While sensitivity changed among participants, the same three considerations were reported 
for marking significant events: deviation from clinical norm, overall trend, and surprising trend deviations. (See Figs. B.12,B.13 and B.14). 

Additionally, we present examples from of T1’s raw data corresponding to results presented at Section 3.2.2:  

• Clinical severity is determined by the absolute values and the trend of the presented vital sign [“These values requires ventilation, this is severe” -N1], 
[“This trend is important because if it goes any lower then something bad will happen to this patient” -P3]  

• High or low absolute values are important as they describe clinically severe states - “This is very important.. With these readings.. this is clinically 
severe” -N1  

• General trend hints at clinical severity even if the absolute values are not severe just yet – “This downward trend is bad.. it is also long, may the staff is 
missing somethong” -N1. 
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• As for sudden deviations from the trend, participants provided two different explanations for their importance: One is that a sudden change could 
be a symptom of a clinical event “Such sudden change describes an event, something snapped” -P6. The other is that these are less likely to be predicted 
by the staff and therefore they are a prediction of a surprising event “Surprise is anything that deviates from my expectations” -N4.  

• The same slope of heart rate trajectory is more important when the absolute values are also concerning: “This whole trend is important, but after it 
goes down below 92 it is very important to me” -P6 

Appendix C. T3: Anchoring 

As mentioned in Methods, the two versions of this task achieved the same result. A change in the importance curve occurs only if previous 
measurements exceed clinical norm and are considered cause for concern (at least in the terms revealed in task T2). Fig. C.15 displays measurements 
that are borderline according to the medical literature but were not rated as concerning in task T2 and yield no change with respect to the baseline 
curves. 

Appendix D. T4: Pure trend 

The curves in Fig. D.16 represent the importance attributed by the participants to displayed trends in task T4. Importance seems to increase non- 
linearly as vitals’ slope becomes steeper. We note the SpO2 curve presents differently since it has a single direction of exceeding norm – only towards 
lower values. 

Appendix E. Coding table  

Prediction Content 
Vitals Trajectory 
Predict trend 
Bad trend 
State Trajectory 
Changes 
Window 
Step predictions 
Multiple future states scores 
Multiple future vitals readings summaries 
Counterfactual predictions 
Events 
Critical 
Minor 
Sudden vital change 
Requires non-aggressive treatment 
Trend Deviation 
Prioritizing Care 
Respond 
Monitor 
Time 
High frequency 
monitoring 
Predictions 
Two prediction timelines 
Days 
Minutes 
Timeline per disease 
Disease time 
The shortest time step of existing diseases 
Context 
Surprise 
Abnormal attributes 
Unexpected trajectory 
Patient baseline 
Probability 
Pros 
Cons 
Performance evaluation per patient 
Consider extensive context (meds etc.) 
Clinically severe (bad trend, not recovering etc.) 
Workflows 
Concern for false alarms 
Frequent re-evaluations 
Accounting for “soft indicators” 
Nighttime overload 
Human errors 
Reluctant to maintain information systems 
Other Machine Learning Opportunities 
Diagnostics 
Action recommendations 
Roles & Experience 

(continued on next page) 
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(continued ) 

Physician 
Nurse 
Intern 
Senior 
Adults 
Pediatrics  
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