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Abstract
Background: A�i�cial intelligence systems for medical imaging have traditionally focused on
highly speci�c tasks and have generalized inconsistently to new problems. The combination of
large language models (LLMs) and vision encoders o�ers the potential to address some of these
challenges. In this work, we present an approach that enables e�cient training of multimodal
models using routinely collected medical images and their associated text repo�s, and adds the
ability to pe�orm a diverse range of tasks with rich expressive outputs. This approach unlocks
the potential for a new generation of medical AI applications, suppo�ing work�ows including
high pe�ormance zero-shot and data-e�cient classi�cation, semantic search, visual question
answering (VQA), and radiology repo� quality assurance (QA).

Methods: Our approach, which we call Embeddings for Language/Image-aligned X-Rays, or
“ELIXR”, leverages a language-aligned image encoder “gra�ed” via an adapter onto a �xed
LLM, PaLM 2, to pe�orm a broad range of tasks. We train this lightweight adapter architecture
using images paired with corresponding free-text radiology repo�s from the MIMIC-CXR
dataset. Evaluation of zero-shot and data-e�cient classi�cation was pe�ormed using the public
CheXpe� and ChestX-ray14 datasets, as well as a private dataset from �ve hospitals in India.
Semantic search was evaluated across four themes using the MIMIC-CXR test set. VQA was
evaluated using the VQA-RAD benchmark and the MIMIC-CXR test set. LLM output for repo�
QA was evaluated on the MIMIC-CXR test set by a board-ce�i�ed thoracic radiologist.

Results: ELIXR achieved state-of-the-a� pe�ormance on zero-shot chest X-ray (CXR)
classi�cation (mean AUC of 0.850 across 13 �ndings), data-e�cient CXR classi�cation (mean
AUCs of 0.893 and 0.898 across �ve �ndings (atelectasis, cardiomegaly, consolidation, pleural
e�usion, and pulmonary edema) for 1% (~2,200 images) and 10% (~22,000 images) training
data), and semantic search (0.76 normalized discounted cumulative gain (NDCG) across
nineteen queries, including pe�ect retrieval on twelve of them). Compared to existing
data-e�cient methods including supervised contrastive learning (SupCon), ELIXR required two
orders of magnitude less data to reach similar pe�ormance. ELIXR also showed promise on CXR
vision-language tasks, demonstrating overall accuracies of 58.7% and 62.5% on visual question
answering and repo� quality assurance tasks, respectively. These results suggest that ELIXR is a
robust and versatile approach to CXR AI.

Conclusion: LLM-aligned multimodal models can unlock the value of chest X-rays paired with
radiology repo�s to solve a variety of previously challenging tasks.

Keywords: a�i�cial intelligence, medical imaging, deep learning, natural language processing,
chest X-ray, multimodal fusion, CLIP, BLIP-2



Introduction
The past decade has witnessed dramatic advances in a�i�cial intelligence (AI) in medical
imaging. Numerous deep learning systems have been developed that can achieve expe�-level
pe�ormance across a range of medical tasks1. However, clinical and technical limitations have
resulted in an implementation gap that has impeded the impact of AI in real world health
applications at scale2. Key challenges include the signi�cant cost of curating high quality
training datasets, restriction of AI development to narrow, highly speci�c tasks, di�culty in
processing multimodal data, and limited interpretability that has hampered e�ective human-AI
interaction3.

Until recently, AI systems for medical imaging have been largely built using vision-only models,
including convolutional neural networks (CNNs) and vision transformers4. Using a traditional fully
supervised approach, training CNNs and vision transformers is an expensive and
time-consuming process that requires large quantities of expe�ly annotated data5. In addition,
such networks are usually limited to pe�orming discrete tasks, such as image classi�cation,
object detection, and segmentation. On the input side, these networks also take in only images,
usually of just one modality. In contrast, healthcare work�ows are typically multimodal in nature,
with clinicians leveraging a diverse array of inputs (e.g. clinical notes, images, investigations)
when making diagnoses and treatment decisions.

Large language models (LLMs) are pa� of a new generation of versatile transformer-based6 AI
models that are trained on massive datasets and demonstrate previously unseen abilities to
generalize to a range of tasks, despite requiring very li�le task-speci�c data7,8. The multimodal
combination of vision models and LLMs presents a range of exciting possibilities including
zero-shot image-to-text generation that can follow natural language instructions9–11. In medical
imaging, these advances o�er the potential to address limitations of vision-only models by
enabling model training using ubiquitous medical images that have paired free text repo�s,
adding capabilities to carry out a diverse range of tasks, accurately coping with the long-tail of
diagnoses, enabling true multimodal inference, and presenting new options for expressive
human-computer interaction7.

In this paper, we present a lightweight vision-language adapter model called ELIXR (Embeddings
for Language/Image-aligned X-Rays), which builds upon prior work9–11 to combine or “gra�” a
vision encoder with a frozen LLM to pe�orm a wide range of vision-language tasks broadly
relevant to medical imaging. Our case study in this work focuses on chest X-rays (CXRs) due to
the wide availability of image-text paired data, but the methods are applicable to other image
modalities. We describe the following key advantages of ELIXR:

1. ELIXR achieves state-of-the-a� pe�ormance for zero-shot classi�cation,
data-e�cient classi�cation, and semantic search of thoracic conditions across a
range of datasets. These factors may enable a new class of models that can address
the long-tails of diagnoses in the medical domain, and provide a path for more broadly
useful AI tools in the diagnostic work�ow.

2. Adapting an image encoder to an LLM using ELIXR is a fast and resource-e�cient
method of training compared to full �netuning of an LLM, leveraging a modest-sized
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frozen LLM and a data-e�cient frozen vision encoder. Building models on top of ELIXR
can be done rapidly to prototype new use cases, adapt to distribution shi�s with a small
amount of new training data, or use alternative publicly available LLMs.

3. ELIXR’s synthesis of imaging and text unlocks a new generation of medical AI
applications. In this study we demonstrate semantic search, visual question answering
(VQA), and radiology repo� quality assurance (QA), but there are countless potential
applications across the medical domain that can be addressed using the proposed
multimodal framework.

4. ELIXR is trained using paired CXR and free text radiology repo�s - data that are
ubiquitous in healthcare. The training process does not require expensive manual label
curation by expe�s. Such an approach unlocks the value of routinely collected medical
data to develop AI systems at far greater scale and at lower overall cost than previously
possible.

Methods

ELIXR system
We trained the ELIXR system in two stages (ELIXR-C and ELIXR-B).

First, we trained the ELIXR-C model using Contrastive Language–Image Pre-training (CLIP)9

(Figure 1a). This uses radiology repo�s to align our previously published pre-trained supervised
contrastive learning-based (SupCon) vision-only CXR model12 with a T5 language encoder13. CLIP
uses a contrastive loss function, which encourages the model to bring the representations of an
image and its associated text (in this case, the radiology repo�) closer together in a
high-dimensional space, while simultaneously pushing apa� representations of mismatched
images and text.

Second, we trained an LLM-aligned adapter network ELIXR-B (Figure 1b), based on the
Bootstrapping Language-Image Pre-training 2 (BLIP-2) architecture10. ELIXR-B is built directly
upon ELIXR-C, where it aims to extract location-aware features from the unpooled spatial
ELIXR-C image embedding space and map them to the LLM’s language token space. In this
work, we used PaLM 2-S as the LLM14. By serving as an adapter between the image encoder and
the LLM, ELIXR-B passes information between vision and language encoders via an a�ention
mechanism, and allows us to leverage the existing knowledge and reasoning abilities of the LLM
to interpret the images and pe�orm various vision-language tasks (e.g. captioning, VQA). For
computation and data e�ciency, we keep both ELIXR-C and PaLM 2-S frozen, and only train the
adapter between them. This can be thought of as a way of gra�ing an image encoder onto an
LLM. More speci�cally, following the BLIP-2 architecture10, there are two phases to ELIXR-B
training: vision-language representation learning (phase 1) and vision-language generative
learning (phase 2). In the �rst phase, the vision-language model (the Q-Former) is trained to
understand and represent both CXRs and repo�s in a shared embedding space by jointly
employing three di�erent tasks: a) image-text contrastive learning (ITC), b) image-grounded text
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generation (ITG), and c) image-text matching (ITM). Standard contrastive loss is applied for
image-text contrastive learning; image-grounded text generation is modeled as a classi�cation
problem (i.e. which token in the vocabulary should be chosen at each output position) and
optimized by cross-entropy loss; image-text matching is modeled as a binary classi�cation
problem (image-text matched/unmatched) and optimized by cross-entropy loss. This results in a
model that can extract key information from the image embeddings and align it with the repo�
text embedding space. In the second phase, a multilayer perceptron (MLP) that connects the
Q-Former with the LLM, and the Q-Former itself are fu�her trained to generate the impressions
section of radiology repo�s based upon the image embeddings from ELIXR-B using the LLM.
The language modeling (standard cross-entropy) loss is used to guide the training. The result is
that the Q-Former is able to produce LLM-aligned tokens based on the image and feed the
most useful information to the LLM, while removing irrelevant visual information.



Figure 1: Architecture of ELIXR. (a) Training and inference of ELIXR-C. (b) Training and
inference of ELIXR-B. ELIXR-B is trained in two phases. In the �rst phase, the model bootstraps
vision-language representation in the Q-Former with three learning objectives (image-text
contrastive learning (ITC), image-grounded text generation (ITG), image-text matching (ITM)
losses) to learn from embeddings from a frozen image encoder. In the second phase, the model
bootstraps vision-to-language generation from a frozen large language model. The purple text
boxes represent the learned (unfrozen) components in the training step. Details of the VQA
inference are fu�her described in the relevant section.

Datasets
We included more than one million CXR images from six datasets in this study as described in
Table 1: �ve hospitals from India (IND1), a hospital from Illinois, USA (US) (US1), Beth Israel
Deaconess Medical Center in Massachuse�s, USA (MIMIC-CXR), National Institutes of Health
(NIH) Clinical Center in Maryland, USA (CXR-14), Stanford Health Care in California, USA



(CheXpe�), and the VQA-RAD dataset from the National Library of Medicine MedPix
pla�orm15–21.

Data from IND1, US1, and the MIMIC-CXR train set were used for training ELIXR-C, while only
data from the MIMIC-CXR train set were used for training ELIXR-B. Details of datasets and the
evaluation tasks in which they were used appear in Table 1. Labels for IND1 and US1 are as
previously described12.

Dataset IND1 US1 MIMIC-CXR CXR-14 CheXpe�
VQA-RAD
(Chest-only)

Dataset usage

Development
(train/validation

sets)
ELIXR-C ELIXR-C

ELIXR-C and
ELIXR-B

Evaluation
(test set)

Data-e�cient
and zero-shot

All tasks
Data-e�cient
and zero-shot

Data-e�cient
and zero-shot

VQA

Dataset and patient statistics

Dataset origin
Five hospitals in

India
An AMC in
Illinois, USA

AMC in
Massachuse�s,

USA

NIH, Maryland,
USA

AMC in
California, USA

NIH, Maryland,
USA

Number of
patients

348,335 12,988 60,523 30,805 65,654 107

Age (IQR) 35-58 48-71 43-72 34-59 N/A N/A

Sex

Female:
133,833 (38.5%)

Male:
214,334 (61.5%)

Unknown:
168 (< 0.1%)

Female:
6,779 (52.2%)

Male:
6,209 (48.8%)

Female: 31,610
(52.2%)

Male: 28,913
(48.8%)

Female:
14,175 (46.0%)

Male:
16,630 (54.0%)

N/A N/A

Image and �nding statistics

Number of
images 485,082 165,182 243,324 104,278 223,648 107

View (AP/PA)

AP:
79,958 (16.5%)

PA:
625,735 (83.5%)

AP:
108,822 (65.9%)

PA:
24,269 (14.7%)

Unknown:
32,091 (19.4%)

AP:
147,169 (60.4%)

PA:
96,155 (39.6%)

AP:
44,811 (40.0%)

PA:
67,305 (60.0%)

N/A N/A

Airspace opacity 43,629 (9.0%) 15,309 (10.1%)* 54,769 (22.5%) 3,485 (3.3%) 94,328 (30.2%) N/A

Fracture 5,200 (1.1%) 5,760 (3.8%)* 4,781 (2.0%) 546 (0.5%) 7,436 (2.4%) N/A

Pneumothorax 1,657 (0.3%) 7,202 (4.8%)* 11,235 (4.6%) 5,302 (5.1%) 17,700 (5.7%) N/A

Consolidation 15,144 (3.1%) 6,315 (4.2%)* 11,525 (4.7%) 4,667 (4.5%) 13,015 (4.2%) N/A

Pleural e�usion 1,228 (0.3%) 33,280 (22.0%*) 57,721 (23.7%) 13,317 (12.8%) 76,963 (24.6%) N/A
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Pulmonary edema 1,136 (0.2%) 34,301 (22.7%)* 29,331 (12.1%) 2,303 (2.2%) 49,717 (15.9%) N/A

Atelectasis 15,929 (3.3%) 49,293 (32.6%)* 48,790 (20.1%) 11,559 (11.1%) 29,795 (9.5%) N/A

Cardiomegaly 1,115 (0.2%) 17,001 (11.3%)* 47,673 (19.6%) 2,776 (2.7%) 23,451 (7.5%) N/A

Suppo� Devices 29,698 (6.1%)* 97,463 (64.6%)* 73,294 (30.1%) N/A 107,014 (56.2%) N/A

Enlarged
cardiomediastinum

349 (0.1%)* 421 (0.3%)* 7,657 (3.1%) N/A 9,273 (4.9%) N/A

Lung lesion 7,713 (1.6%)* 1351 (0.9%)* 6,632 (2.7%) N/A 7,022 (3.7%) N/A

Pleural other 19,301 (4.0%)* 1807 (1.2%)* 2,083 (0.9%) N/A 2,493 (1.3%) N/A

Pneumonia 54 (0.0%)* 29,816 (19.7%)* 17,222 (7.1%) 1,255 (1.2%) 4,657 (2.4%) N/A

Table 1: Descriptive statistics of the datasets used in the study. *: estimated from radiology
reports

Evaluation
We demonstrated the utility of ELIXR on �ve CXR-related tasks: (1) zero-shot classi�cation, (2)
data-e�cient classi�cation, (3) semantic search, (4) VQA, and (5) repo� QA (Table 2). Zero-shot
and data-e�cient image classi�cation as well as semantic search were pe�ormed using
ELIXR-C and ELIXR-B phase 1 (language-aligned image embeddings), while VQA and quality
assurance were pe�ormed using ELIXR-B phase 2, which combined these embeddings with the
�xed PaLM 2-S LLM14.

Task Input Model output Metric
ELIXR versions

used

Zero-shot
classi�cation

CXR image
Positive prompt(s)
Negative prompt(s)

Classi�cation score AUC
ELIXR-C and

ELIXR-B phase 1

Data-e�cient
classi�cation

For training small nonlinear
classi�ers on embeddings:
variable amount of CXR

images with their
corresponding annotations
For inference: CXR image

Classi�cation score AUC
ELIXR-C and

ELIXR-B phase 1

Semantic
search

Text description of search
term

Top-5 CXR images from
MIMIC-CXR test set that

are related to the
description

NDCG@5
Precision

ELIXR-C and
ELIXR-B phase 1

Visual question
answering
(VQA)

CXR image
Questions about the image

Answers to given
questions based on the

image
Accuracy ELIXR-B phase 2

Repo� quality
assurance (QA)

CXR image
Normal/altered radiology

repo�

Decision about accuracy
of repo�, along with rich

text explanation.
Accuracy ELIXR-B phase 2
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Table 2: Downstream chest X-ray tasks that are evaluated in this study. ELIXR-C takes
images and/or text as input and outputs embeddings; ELIXR-B takes images and/or text as input
and outputs embeddings and/or text. Therefore, for text output tasks such as VQA and QA, only
ELIXR-B is used.

Classi�cation

For zero-shot and data-e�cient classi�cation of CXR �ndings, area under the receiver
operating characteristic curve (AUC) for each �nding class is repo�ed since the tasks are all
binary classi�cations. We compared ELIXR-C and ELIXR-B pe�ormance with SupCon and
previous SOTA models CheXzero and ConVIRT as baselines22,23. We also evaluated the e�ect of
varying the training dataset size.

Zero-shot classi�cation
To pe�orm zero-shot classi�cation using ELIXR-C, we adopted a prompting strategy described
previously23. Note that because ELIXR-C was pretrained on images and repo�s that include the
�ndings being classi�ed, “zero-shot” refers more to open-ended classi�cation without using
explicit labels during training than it does to never having observed these �ndings during
training. The positive and negative text prompts were passed through the text encoder to obtain
their text embeddings. These text embeddings were each average pooled and normalized,
resulting in one representative embedding for each prompt. A cosine similarity was then
calculated between the image embedding and these two text embeddings. A so�max of the
cosine similarity for the positive prompt was used to produce a classi�cation score so that AUC
can be calculated. When there are multiple prompts for the positive or negative case, the mean
of the cosine similarities of these prompts was taken before computing the so�max. Details of
the prompts are listed in Supplementary table 1.

For ELIXR-B, the image as well as positive and negative text prompts were passed through the
Q-Former to get the output image query tokens and the sequence of text embeddings. The �rst
in the sequence of text embeddings is the single special classi�cation token ([CLS]). The
cosine similarity is calculated between this classi�cation token and each of the output image
query tokens. The highest cosine similarity for the positive prompt and the highest cosine
similarity for the negative prompt are passed to the so�max function to get the �nal
classi�cation score.

Data-e�cient classi�cation
To pe�orm data-e�cient classi�cation, we followed the same procedure as in Sellergren et al12:
a nonlinear classi�er, an MLP consisting of two layers of 512 and 256 neurons, was trained on top
of the frozen image encoder. We adopted a learning rate of 0.2, batch size of 512, and trained
for 300 epochs with the layer-wise adaptive rate scaling (LARS) optimizer. To make results more
directly comparable to CheXzero and ConVIRT, we also trained linear classi�ers for the 1% and
10% training data samples.
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Statistical analysis
For data-e�cient classi�cation, the AUC was averaged across 10 repeats of randomly
subsampled training sets. To obtain an overall summary, the AUCs were (also) averaged across
all tasks and all datasets (CheXpe�, CXR-14, and IND1) for each training set size. 95%
con�dence intervals were calculated using twice the standard error across the 10 randomly
drawn train set samples, and hypothesis testing was based on comparing the model closest to
the mean pe�ormance across the 10. For the zero-shot models, 95% con�dence intervals were
estimated and AUCs were compared using the DeLong method24.

For semantic search, con�dence intervals were calculated by bootstrapping with 1,000 samples.
p-values were calculated from two-sided permutation tests with 1,000 iterations.

Semantic search

For semantic search (also known as text-image retrieval), we provided queries across four
topics, including queries for single �ndings, laterality-speci�c, severity-speci�c, and nuanced
features. For each query, the analysis focused on the top �ve retrieved images based on model
predictions. There were seven single �nding queries, three laterality queries, four severity
queries, and �ve nuanced queries. We compared ELIXR-C and ELIXR-B against the current
state-of-the-a� model MedCLIP25 using the publicly available code and model checkpoints. The
MIMIC-CXR test set served as the data pool for retrieval. The full list of 19 queries is provided in
Supplementary table 2.

For semantic search using ELIXR-C, we computed the cosine similarity between the query text
embedding and the image embeddings from the data pool. The top �ve images with the highest
cosine similarity were retrieved. For semantic search using ELIXR-B, we adopted the two-stage
method in BLIP-210. In the �rst stage, we retrieved 128 images with the highest cosine similarity
similar to CLIP as the candidates. In the second stage, the image-text matching score (i.e. the
matched class probability) was computed to rerank these 128 candidates. The top �ve images
with the highest image-text matching score from these 128 candidates were then returned.

For evaluation, a board-ce�i�ed thoracic radiologist (CL) scored the semantic search results as
follows: 0 = irrelevant or factually incorrect, 1 = close �t to the query, but not the one intended
(e.g., retrieved “bilateral e�usion” for “right e�usion” query), and 2 = reasonable match.
Precision at �ve (precision@5) and normalized discounted cumulative gain at 5 (NDCG@5) were
calculated to evaluate the quality of retrieval26. For the ideal rank normalization, we assumed the
data pool contained at least �ve matched queries, and thus we set the relevance scores to be all
2s for the ideal relevance. Precision for cases that had reasonable match (score = 2) and
precision for at least somewhat �t (score ≥1) were also measured.

To establish the context of the di�culties of the retrieval, we estimated the total count of
images with corresponding pathologies. To do so, we adopted an LLM-based approach to
detect mislabeling within the MIMIC-CXR test set27,28. Candidates for correction were �rst
identi�ed by a keyword search on the radiology repo�s. Next, a medically tuned LLM
(Med-PaLM 229) was applied to ensure that the label was consistent with the repo�, and a
board-ce�i�ed thoracic radiologist (CL) adjudicated cases where the LLM results di�ered from
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the ground truth in MIMIC-CXR. Details are listed in Supplementary table 3 and Supplementary
�gure 1.

Visual question answering

We used two di�erent datasets for VQA evaluation of ELIXR-B: a subset of the MIMIC-CXR test
set, which is from the same domain as a pa� of the training dataset, and the subset of chest
x-ray cases (IMAGEORGAN == “CHEST” AND ANSWER != “ultrasound”) in the VQA-RAD
dataset17, from a di�erent domain than the training dataset. A small held-out tuning set
consisting only of “yes” or “no” answers from VQA-RAD was used for model checkpoint
selection. Speci�cally, we used our own test and tuning splits for the 793 VQA-RAD CXR
question and answer pairs, since the original test set (column Phrase_type/QID_para ==

“test_freeform” or “test_para”) shares images with the development set (QID_para ==

“freeform” or “para”). By contrast, the images in our test set (584 questions on 73 images)
are disjoint from the tune set images, and thus were unseen by the model until evaluation time.
Moreover, we did not train the model on any VQA-RAD question and answer pairs, but only used
it for checkpoint selection based on our smaller tuning set of 209 VQA pairs across 25 images.
We compared ELIXR-B against the SOTA MedVInT30 model using the publicly available code and
a model checkpoint that, like ours, was not �netuned on VQA-RAD.

The second VQA dataset is a subset of cases with �ndings from MIMIC-CXR test set, as labeled
in the MIMIC-CXR-JPG project27,28, with eight cases for each for the following �ndings: “No
Finding”, “Pneumothorax”, “Pleural E�usion”, “Edema”, “Consolidation OR Pneumonia”
(collected as a single category), and “Lung Lesion”. See the repo� quality assurance section
below for fu�her details on the case selection. For each case with a �nding present (with �nding
presence con�rmed by a board-ce�i�ed thoracic radiologist (CL)), we queried the model with a
set of �nding-speci�c questions, covering its presence, location, and its severity, size or type,
where applicable. See Supplementary table 4 for the complete question catalog. In addition, we
asked two additional �nding-independent questions per case, and three �nding-independent
questions for cases without any of the above �ndings (category “�nding-independent” in the
Supplementary table 4).

Since both phases of ELIXR-B were trained to generate the impression section of a radiology
repo�, but neither was tuned to follow instructions, we utilized both the impression generation
results from phase 1 (same ITG setup as BLIP-2,10) and LLM-aligned tokens from phase 2 to
facilitate the VQA use case. Speci�cally, a�er generating the impression with phase 1, we then
ran inference for the phase 2 model, using the following dialog prompt for the PaLM 2-S LLM
wherein the LLM-aligned tokens from phase 2 inference were placed at the beginning of the
prompt at ({aligned LLM tokens}), the phase 1-generated impression was fed to
({impression}), and the speci�c question ({question}) was added a�erwards:

{aligned LLM tokens}
[Bot] I'm a helpful Chest X-ray assistant, I can help you interpret
the above image.
[User] What are the findings?
[Bot] {impression}
[User] Based on the above chest x-ray, the findings, and/or your

https://paperpile.com/c/h9tjIy/RUjM
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medical knowledge, answer the following question: {question}
[Bot]

In terms of answer grading, model answers that could programmatically be mapped to “yes” or
“no” and compared against “yes”-or-“no”-expected answers were automatically graded with
1.0 for a match, and 0.0 otherwise. A board-ce�i�ed thoracic radiologist (CL) graded the
remaining model answers using correctness scores 0.0, 0.5 or 1.0. See Supplementary table 5
for the full scoring rubric.

For the MIMIC-CXR test set samples, the same radiologist using the same scoring rubric
evaluated all 216 answers generated by the model based on their assessment directly of the CXR
image and original radiology repo�.

Sensitivity, speci�city and accuracy values were calculated from the average radiologist grades
on respective subsets where the condition was positive, negative or both.

Report quality assurance

In the repo� quality assurance task, we simulated the situation where a radiology repo�
contained errors and used ELIXR-B to identify and suggest corrections to these errors. Errors
that we evaluated included swapping laterality of a �nding (“le�” to “right” or vice versa),
adding an erroneous �nding that was not clearly present in the image, or omi�ing a major
�nding that was present in the image.

To evaluate ELIXR’s pe�ormance, we �rst identi�ed a subset of cases with �ndings from the
MIMIC-CXR test set, as labeled in the MIMIC-CXR-JPG project, that would be most relevant for
evaluating quality assurance: “No Finding”, “Pneumothorax”, “Pleural E�usion”, “Edema”,
“Consolidation OR Pneumonia” (collected as a single category), and “Lung Lesion”. We
randomly selected eight cases per �nding. For each case we de�ned the “primary �nding” as
the �nding that was used in the query that yielded that given case, even if other �ndings,
including more clinically signi�cant �ndings, were present in the case. For example, if we
searched for cases with pleural e�usion and discovered a case with both pleural e�usion and
pulmonary edema present, the primary �nding for that case was considered to be pleural
e�usion. We �ltered cases to ensure that (1) an impression section was present in the repo�
(true for approximately 83% of cases) and (2) the primary �nding was present unambiguously in
the image, based on the impression of a board-ce�i�ed thoracic radiologist (CL).

Within the set of eight cases for each �nding category, we made an alteration per case as
follows: two cases we le� with unaltered impression sections (the “control” cases), two cases
had the primary �nding’s laterality swapped, two cases had the primary �nding removed, and
two cases had an erroneous �nding added. For each alteration, we made fu�her minimal
modi�cations to the impression text as needed to ensure that it was internally consistent (e.g., if
we added an extraneous �nding of “moderate pulmonary edema,” we con�rmed that the rest of
the repo� was clinically consistent with this alteration). A summary of these alterations appears
in Supplementary table 6. For ”Edema”, because pulmonary edema tends to be a bilateral
�nding, we did not include any cases with swapped laterality and instead included three control



cases, three cases where an extraneous �nding was added, and two cases where the primary
�nding of ”Edema” was removed, still resulting in eight cases total. For the cases labeled as "No
Finding", modi�cations like laterality swapping and �nding removal were not feasible. Therefore,
we chose four control cases and four cases in which we introduced a false �nding, providing us
with a total of eight cases. A�er making these alterations, we had 48 total cases, each of which
had an associated CXR image and an impression section that was either unaltered (control) or
altered according to the above process.

To generate the model outputs for evaluation, we �rst ran ELIXR-B phase 1 inference on the
image to produce a repo� with ELIXR’s �ndings. We then fed the image, the generated repo�,
and a series of prompts that covered the main possible set of �ndings in chest x-rays to
ELIXR-B phase 2.

For each prompt, the Q-Former-encoded image embeddings preceded the text hard prompt as
input into PaLM 2-S, and the control or altered impressions section was inlined in place of the
variable {altered_impression}. ELIXR provided an assessment as to whether each �nding existed,
and if so, assessed the laterality in order to suppo� the laterality swap detection task. The
prompts were as follows.

1. If there's an endotracheal tube (ET tube) in the chest x-ray, tell me
whether it's mal-positioned or well-positioned. If there's no ET tube,
respond 'no'

2. Is there any evidence of pneumothorax in the chest x-ray? If so, on which
side(s)?

3. Are there any signs of pleural effusion present in the x-ray? If so, on
which side(s)?

4. Are there any visible signs of pulmonary edema in the CXR? If so, on which
side(s)?

5. Are there any signs of pneumonia or lung infection? If so, on which
side(s)?

6. Are there any signs of consolidation or lung infection in this patient's
chest x-ray? If so, on which side(s)?

7. Are there any signs of atelectasis in the lungs? If so, on which side(s)?
8. Are there any signs of fibrosis in the lungs? If so, describe it
9. Are there signs suggestive of a nodule or mass in this patient's chest

x-ray? If so, on which side(s)?
10.Is the cardiac silhouette size normal or enlarged?
11.Is a hiatal hernia present? If so, on which side(s)?
12.Are there any signs of acute skeletal fracture? If so, where?

This initial pa� of the work�ow was essentially comprehensive VQA. We concatenated these
responses into a single piece of text to constitute ELIXR’s comprehensive �ndings.

We then fed the concatenated questions and answers into a non-image-aligned LLM,
Med-PaLM 229, to determine whether there were any missing �ndings, erroneously added
�ndings, or laterality swaps. The two prompts to do this were as follows. Note that while
MIMIC-CXR contains full repo�s for most cases, we altered and evaluated only the impression
section of the repo�s.

You are an expert radiologist. These are your responses to a comprehensive
assessment of a patient's chest x-ray (CXR).

https://paperpile.com/c/h9tjIy/vU0y


ASSESSMENT: {questions and ELIXR answers separated by new lines}.

A radiology resident has written the following radiology report for the same
CXR. RESIDENT'S REPORT: {altered_impression}.

Are there any findings that you mark positive or abnormal in your assessment but
that the resident either marks absent/negative or simply does not mention? If
so, what are the findings?

You are an expert radiologist. These are your responses to a comprehensive
assessment of a patient's chest x-ray (CXR).

ASSESSMENT: {questions and ELIXR answers separated by new lines}.

A radiology resident has written the following radiology report for the same
CXR. RESIDENT'S REPORT: {altered_impression}.

Are there any findings that you mark negative or normal in your assessment but
that the resident marks positive/abnormal in his report? If so, what are the
findings?

LLM responses were graded by a board-ce�i�ed thoracic radiologist (CL) according to the
rubric in Supplementary table 7. If the LLM correctly described the alteration (or identi�ed an
unaltered, control repo� as being correct and complete), the LLM output was scored as correct;
if the LLM failed to identify the alteration, even if it gave an otherwise correct response, the
output was scored as incorrect.

Results

ELIXR demonstrates state-of-the-art zero-shot classi�cation
performance comparable to fully supervised SupCon classi�ers
trained on as many as 224,000 examples
ELIXR-B and ELIXR-C demonstrated zero-shot classi�cation pe�ormance on �ve �ndings
(“atelectasis”, “cardiomegaly”, “consolidation”, “pleural e�usion”, and “pulmonary edema”)
that was comparable to SupCon’s classi�cation pe�ormance when trained on the entirety of the
CheXpe� train set (~224,000 examples). Note that although ELIXR’s vision encoder was
initialized from a SupCon checkpoint, CheXpe� was not used for pretraining SupCon at all, only
for training small downstream classi�ers. Thus, CheXpe� is completely held out from ELIXR-B
and ELIXR-C zero-shot.

Across the 13 �ndings (excluding “No Finding”) from the CheXpe� test set, ELIXR-C and
ELIXR-B both surpassed the state-of-the-a� zero-shot pe�ormance from CheXzero23. Figure 2
shows the details of the pe�ormance comparison for zero-shot classi�cation. Positive and
negative texts for prompt tuning in zero-shot classi�cation are listed in Supplementary table 1.

https://paperpile.com/c/h9tjIy/tH90


Figure 2: ELIXR demonstrated state-of-the-a� zero-shot classi�cation pe�ormance
comparable to label-e�cient method supervised contrastive learning (SupCon). AUCs
and 95% con�dence intervals for zero-shot classi�cation for ELIXR-B, ELIXR-C, and CheXzero
ensemble23 across 11 �ndings (including only �ndings with >5 positives and excluding “No
Finding” label) as well as SupCon fully-supervised (trained on the entire 224K examples of
CheXpe�) classi�cation for �ve �ndings on the CheXpe� test dataset. Full results with p-values
are available in Supplementary table 8.

ELIXR-B and ELIXR-C both set a new state-of-the-a� for data-e�cient linear probe
classi�cation on CheXpe�’s �ve main �ndings (“atelectasis”, “cardiomegaly”, “consolidation”,
“pleural e�usion”, “pulmonary edema”) using 1% and 10% of the train set, outpe�orming even

https://paperpile.com/c/h9tjIy/tH90


the fully-�netuned ConVIRT22. ELIXR-B and ELIXR-C also both demonstrated data-e�cient
pe�ormance superior to SupCon (Figure 3) or, to put it another way, demonstrated
data-e�cient pe�ormance equivalent to SupCon using roughly two orders of magnitude less
training data (e.g. ELIXR-B and ELIXR-C 64-shot pe�ormance was noninferior to SupCon
4096-shot pe�ormance; see Supplementary tables 9 and 10 for p-values). Table 3 shows a
summary of comparisons between ELIXR and the SOTA for zero-shot and data-e�cient.

Figure 3: E�ect of using ELIXR-C, ELIXR-B, and supervised contrastive learning (SupCon)
for data-e�cient classi�cation. The repo�ed pe�ormance is averaged across 2 datasets
(CheXpe� and Chest X-ray14) and seven �ndings: atelectasis, cardiomegaly, airspace opacity,
fracture, pneumothorax, consolidation, pleural e�usion, and pulmonary edema. Both ELIXR-C
and ELIXR-B demonstrate superior pe�ormance compared to SupCon at matching dataset
sizes, or, put another way, demonstrate pe�ormance on par with SupCon with two orders of
magnitude less data (red and blue lines are translated two grid lines to the le� from the black
line). Detailed per-dataset and per-�nding graphs are available in Supplementary �gure 2.
Delong’s test results are available in Supplementary tables 9, 10.

https://paperpile.com/c/h9tjIy/LFUq


Mean AUC CheXpe� test
(5 main �ndings)

Mean AUC CheXpe� test
(13 �ndings)

Zero shot

CheXzero 0.889 0.838

ELIXR-C 0.851 0.850

ELIXR-B 0.837 0.846

1% training data

ConVIRT linear 0.859 --

ConVIRT �netune 0.870 --

ELIXR-C linear 0.887 --

ELIXR-B linear 0.893 --

10% training data

ConVIRT linear 0.868 --

ConVIRT �netune 0.881 --

ELIXR-C linear 0.889 --

ELIXR-B linear 0.898 --

Table 3: Comparison of ELIXR against state-of-the-a� models, ConVIRT and
CheXzero22,23. ELIXR sets a new state of the a�, as measured by mean AUC, for zero-shot
classi�cation of 13 �ndings in CheXpe� and data-e�cient classi�cation (1% and 10% training
data) of 5 main �ndings in CheXpe�.

ELIXR enables state-of-the-art semantic search for �ndings using
laterality-speci�c, severity-based, and nuanced terminology
ELIXR-B outpe�ormed both ELIXR-C and the state-of-the-a� MedCLIP25 on the retrieval quality
of top-5 retrieved images. For each query group, we computed the average metrics across the
queries. NDCG@5 and Precision@5 of ELIXR-B were consistently be�er than ELIXR-C across all
query groups. ELIXR-B scored higher than MedCLIP on NDCG@5 for all query groups and on
Precision@5 (score = 2) for three out of four query groups (Table 4).

https://paperpile.com/c/h9tjIy/LFUq+tH90
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Precision@5
(score=2)

Precision@5
(score=1)

NDCG@5

Findings

MedCLIP 0.29 0.29 0.25

ELIXR-C 0.63 0.66 0.66

ELIXR-B 0.74 0.74 0.74

Laterality

MedCLIP 0.77 1 0.76

ELIXR-C 0.73 0.8 0.83

ELIXR-B 0.93 0.93 0.94

Severity

MedCLIP 0.63 0.75 0.66

ELIXR-C 0.35 0.7 0.53

ELIXR-B 0.55 0.7 0.68

Nuanced

MedCLIP 0.54 0.68 0.54

ELIXR-C 0.6 0.84 0.73

ELIXR-B 0.64 0.84 0.74

Total

MedCLIP 0.50 [0.34-0.64] 0.60 [0.40-0.77] 0.49 [0.31-0.63]

ELIXR-C 0.66 [0.52-0.78],
0.154

0.74 [0.60-0.86],
p=0.296

0.68 [0.53-0.81],
p=0.0912

ELIXR-B 0.75 [0.57-0.88],
p=0.047

0.79 [0.63-0.91],
p=0.143

0.76 [0.59-0.89],
p=0.0234

Table 4: Quantitative analysis of CXR semantic search using ELIXR-C and ELIXR-B.
ELIXR-C demonstrated the highest NDCG@5 scores across all four query groups and the
highest Precision scores across three of four query groups as compared to ELIXR-B and the
state-of-the-a� MedCLIP. Con�dence intervals were calculated from bootstrapping; p-values
were calculated from permutation tests between ELIXR-B and MedCLIP or ELIXR-C and
MedCLIP.

On twelve out of nineteen queries, ELIXR-B demonstrated pe�ect retrieval, including for
laterality-speci�c queries like “right pleural e�usion,” severity-speci�c queries like “moderate
cardiomegaly,” and nuanced queries like “nasogastric tip reaches stomach.” Notably, we found
both ELIXR-C and ELIXR-B pe�ormed worse on fracture- and pneumothorax-related queries
than queries related to other �ndings. This could be pa�ially due to the low prevalence of these
two pathologies in the MIMIC test set (4% for fracture and 3% for pneumothorax) compared to
>10% prevalence for other pathologies. See Supplementary table 2 for a complete list of
per-query scores.



Finding (Both Correct)

Nuanced (Both Correct)

Laterality (Both Correct)

Finding (Both Incorrect)

Figure 4: Demonstration of semantic search using ELIXR. Three of four examples here (top
le�, top right, bo�om le�) are correct for both images (scores of 2) while one example is
incorrect for both images (scores of 0, bo�om right).



In some cases, retrieval improved when using more speci�c queries, e.g. adding a laterality or
severity modi�er to a general �nding. For example, ELIXR-C and ELIXR-B scored 0.723 and 0.83
for “le� pneumothorax” as compared to 0.131 and 0.214 for “pneumothorax.” These results
point to the sensitivity of these models to prompting style.

ELIXR supports visual question answering and quality assurance
for radiology reports
On more challenging text-generation tasks, ELIXR-B demonstrated overall accuracies of 58.7%
and 54.8% on two visual question answering (VQA) datasets, VQA-RAD (CXR-only questions)
(Table 5) and MIMIC-CXR test (Table 6), as well as 62.5% on repo� quality assurance (QA) on
MIMIC-CXR test (Tables 7, 8). Notably, ELIXR-B surpassed the accuracy of the SOTA model
MedVInT which wasn’t �netuned on VQA-RAD. A summary of VQA results appears in Tables 5
and 6. Quality assurance results appear strati�ed by alteration type in Table 7 and by primary
�nding in Table 8. Figure 5 shows a selection of example cases for both visual question
answering and quality assurance.

Answer type
(A_TYPE)

Med-VInT
w/ �netuning
Accuracy**

Med-VInT
w/o �netuning
Accuracy

ELIXR-B
Accuracy

ELIXR-B
Sensitivity*

ELIXR-B
Speci�city*

both 81.6% (451) 27.9% (574) 58.7% (574) N/A N/A

closed 86.8% (272) 28.2% (379) 69.3% (379) 42.6% (222) 87.8% (195)

open 73.7% (179) 27.1% (195) 37.9% (195) N/A N/A

Table 5: VQA results of ELIXR-B on our VQA-RAD test set using semantic matching.
Number of total questions and answers in brackets. For comparison with the SOTA method, we
provide results from MedVInT30 both before and a�er �netuning on VQA-RAD to show the
bene�ts it provides. *On the subset of expected that could be programmatically mapped to
“yes” or “no”. **Results from MedVInT for VQA-RAD �netuning are on all image modalities (not
just chest X-ray) and from the o�cial test split.

https://paperpile.com/c/h9tjIy/zCKZ


VQA, Presence, Laterality,
Severity (Correct)

VQA, Presence, Laterality and
Severity (Correct)

VQA, Presence, Laterality and
Severity (Incorrect)

QA, Remove Major Finding
(Correct)

QA, Swap Laterality
(Correct)

QA, Remove Major Finding
(Incorrect)

Figure 5: Qualitative results for visual question answering and quality assurance
inference (from MIMIC test dataset).



Question type Accuracy

all 54.8% (217)

presence 64.5% (148)

location 41.0% (39)

size, severity or type 25.0% (30)

Table 6: Accuracy of ELIXR-B’s VQA answers on a subset of 48 MIMIC cases using
expe�-graded semantic matches. Number of questions & answers noted in brackets. Nine
questions were marked as non-gradable by the expe� due to insu�cient information or
non-relevance (e.g. question about severity despite condition not being present).

Alteration type Number of
cases

Overall model score
(percent correct)

Control 15 53.3%

Swap laterality 8 87.5%

Add major �nding 15 60.0%

Remove major �nding 9 50.0%

Total 48 60.4%

Table 7: Summary statistics of repo� quality assurance results, strati�ed by alteration
type.

Primary �nding Number of
cases

Overall model score
(percent correct)

No �nding 8 100%

Pneumothorax 8 25%

Pleural E�usion 8 62.5%

Edema 8 62.5%

Consolidation or Pneumonia 8 75%

Lung Lesion 8 37.5%

Total 48 60.4%

Table 8: Summary statistics of quality assurance results, strati�ed by primary �nding.



It is impo�ant to note that the results we repo� on VQA-RAD are not directly comparable to
those repo�ed in the literature, for the following reasons: (1) we only used a CXR subset of
VQA-RAD, since ELIXR currently is limited to this modality, (2) we opted for a more di�cult split
than the o�cial development/test split in which the same image never appears across splits, (3)
we refrained from training on the development set and only used it for checkpoint selection. The
e�ect of (2) and (3) appears to be large: as Table 5 shows, MedVInT’s pe�ormance increases
from 27.1% to 73.7% on open-ended accuracy and from 28.2% to 86.8% on close-ended
accuracy a�er �netuning on VQA-RAD. Moor and Huang et al31 noted this data leakage in the
o�cial VQA-RAD splits, as well.

Discussion
In this study, we developed and evaluated ELIXR, a multimodal model that gra�s a
language-aligned vision encoder onto a frozen LLM. The model was trained using CXR images
paired with their free-text radiology repo�s, without the requirement for expensive expe� data
curation. The model achieved state-of-the-a� pe�ormance for zero-shot classi�cation,
data-e�cient classi�cation, and semantic search tasks, while also demonstrating potential in
visual question answering and radiology repo� quality assurance. The modular architecture has
the advantage of being easily adaptable to other tasks, with the ability to swap in di�erent vision
encoders and base LLMs as required.

The ELIXR architecture is data and computationally e�cient. Previously we demonstrated that
small nonlinear classi�ers trained on a frozen SupCon vision encoder can outpe�orm fully
supervised models in low-data se�ings12. With ELIXR, we have improved upon the data e�ciency
of supervised contrastive learning by two orders of magnitude. This o�ers the potential to train
highly accurate models that are capable of addressing the long tail of diagnoses (including rare
diseases), with only a fraction of the requirement for expe�-curated training data. The process
of prototyping a model for a new task also becomes simpli�ed and more widely accessible,
requiring only the design of positive and negative prompts using natural language without a
requirement for machine learning expe�ise. We hope that these approaches will enable a wider
range of researchers to engage in a broader array of diagnostic research questions and will
allow medical professionals to develop models for underserved populations or understudied
diseases.

By leveraging a pre-trained frozen vision encoder and a frozen LLM, we were able to train ELIXR
in a highly compute-e�cient manner. Backpropagation of gradients during the second stage of
training is only pe�ormed for the Q-Former and MLP components, which are orders of
magnitude smaller than the vision encoder and frozen LLM. In comparison to �netuning the
vision encoder and/or LLM, this approach to training can be easily used by others who do not
have access to substantial compute hardware. Fu�hermore, when adapting to a new task, or
when newer generations of vision encoders and LLMs become available, it is straigh�orward and
relatively inexpensive to train a new ELIXR model to take advantage of these advances.
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LLMs o�er a deep natural language understanding that enables a new range of possibilities for
rich interaction between clinicians and AI. In this study, we demonstrated early promising
capabilities in semantic search, vision question answering, and repo� quality assurance–all
tasks that cannot be achieved easily using traditional vision-only models.

Semantic search unlocks the ability to search within an image for features of interest using free
text prompts. ELIXR demonstrated high retrieval precision across a broad range of queries,
including pe�ect retrieval of �ve out of seven �ndings-related queries (e.g. “central venous
catheter”), two out of three laterality-speci�c queries (e.g. “right pleural e�usion”), two out of
four severity-related queries (e.g. “moderate cardiomegaly”), and three out of �ve nuanced
queries (e.g. “nasogastric tube reaches stomach”). This capability could be used by researchers
to identify images for study datasets, by clinicians to search for speci�c images of interest from
a patient’s historical record, by educators to �nd examples for teaching purposes, as well as in
many other applications.

ELIXR also enables rich human-AI interaction through visual question answering. We benchmark
our VQA pe�ormance on the chest X-ray subset of the VQA-RAD dataset, yielding accuracy of
69.1% across closed type questions, and 37.9% across open type questions. In contrast to
others’ work, we do not train on VQA-RAD, as the standard VQA-RAD data splits exhibit an
overlap with images in both train/test that risk a�i�cially in�ating pe�ormance31. In addition, we
repo� accuracy based on assessment by a board-ce�i�ed thoracic radiologist rather than
unigram matching (BLEU-1), since BLEU-1 does not comprehensively re�ect the quality of VQA.

Finally, we demonstrate the ability of ELIXR to use its understanding of CXRs to check for errors
in wri�en radiology repo�s. We envision that such a capability could have utility in the hospital
se�ing, potentially acting as an advanced multimodal “spell check” to ale� radiologists to
suspected inconsistencies in their repo�s, improving both quality and consistency of care. It
could also act as an “AI Mentor”, evaluating and mentoring more junior radiologists, including in
se�ings where resource limitations result in less oppo�unity for oversight by senior radiologists.
VQA and QA were heavily dependent on the speci�c prompts used, which were in turn a�ected
by the LLM used by ELIXR. With fu�her work into prompt engineering, it is expected that one
could make the QA more speci�c, with fewer false positive repo�s. This high speci�city is likely
to be needed in a clinical environment, especially where the error rate is far lower than in this
enriched simulated set.

There are a number of limitations to our work. Firstly, through employing a frozen LLM and vision
encoder, we achieve our goals of training e�ciency, but this might be at the expense of overall
pe�ormance (although some works suggest otherwise32). Secondly, ELIXR inherits the current
set of wider challenges of LLMs including fragility to changes in prompts, hallucinations, and
unwarranted con�dence in its answers, even when wrong33. We expect that advances in future
generations of LLMs will directly lead to improved pe�ormance when incorporated into ELIXR.
Thirdly, a lack of established, robust benchmarks makes it challenging to compare pe�ormance
and establish state-of-the-a�. Fou�hly, we note that the MIMIC CXRs used were highly complex
in an intensive care se�ing, containing multiple �ndings, which added more complexity than is
typical compared to routine hospital X-rays. A non-intensive care CXR dataset that re�ects
routine wider hospital practice would be valuable to evaluate in future work. Finally, we selected
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di�erent stages of ELIXR for di�erent tasks based upon a pe�ormance versus e�ciency
trade-o�. For example, on zero-shot learning tasks, the bene�ts of ELIXR-B over ELIXR-C were
limited. In contrast, VQA and repo� QA tasks are more text dependent, and bene�ted from
longer training using larger amounts of text data. We found that some categories of �ndings
were challenging across all tasks–for example pneumothorax and fractures–where the di�culty
of these cases is only pa�ly explained by their low prevalence and noisy reference standards in
the training datasets5.

In future work, we hope to explore ELIXR’s pe�ormance with di�erent general purpose and
medically specialized LLMs (e.g. Med-PaLM 2). We are also excited by the possibility of
extending these methods to other imaging modalities such as musculoskeletal X-ray,
mammography, computed tomography (CT), and also beyond radiology in an e�o� we are
calling Medical Information Adapters. It is also likely that temporal information can be
incorporated into this architecture, widening the range of potential real world clinical
applications.

Conclusion
In this study, we developed and evaluated an e�cient vision-language multimodal model for
medical imaging that is trained using only medical images paired with free-text radiology repo�s
obtained from routine clinical practice. The method is highly compute and data e�cient to train,
and we demonstrated promising pe�ormance across a range of multimodal radiology tasks. This
work is an initial step towards a general purpose X-ray a�i�cial intelligence system.
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Supplementary Text

Additional ELIXR training details

ELIXR-C

For the �rst stage of training using the CLIP loss, E�cientNet-L234 was used as the vision
encoder, initialized from the SupCon checkpoint used in Sellergren et al12. The small variant of T5
was used for the text encoder, initialized from scratch13. The T5 text encoder used a
SentencePiece model35 with a vocabulary size of 32,000 pretrained on PubMed abstracts. For
data augmentation, horizontal �ipping and random rotation up to 15 degrees were applied.
Images were resized to 1280x1280 pixels. A dimension of 128 for the projection head and a �xed
temperature of 0.07 were used. Preprocessing on the radiology repo�s was done to select, in
order of preference, the impression section, followed by the �ndings section. The input text
sequence was truncated at 128 tokens. A batch size of 64 was split across 128 TPUv3 cores using
spatial pa�itioning. Stochastic gradient descent (SGD) constant learning rate was set to 0.0001
with a momentum of 0.98. The model was trained for roughly 80,000 steps. Training was done
in TensorFlow.

ELIXR-B

In the �rst phase of ELIXR-B training, the embeddings from ELIXR-C were precomputed for all
datasets and spatially pooled from 40x40x1376 to 8x8x1376. We used 32 BLIP-2 query tokens
and a max text sequence length of 128. Q-Former weights were initialized from BERT-base. A
batch size of 128 was split across 8 TPUv3 cores. Constant learning rate of 1e-5 was used with
the Adam optimizer (beta1 of 0.98, beta2 of 0.999, epsilon of 1e-8). Training was done in Jax.
Checkpoints were selected using zero-shot pe�ormance on CheXpe� validation as well as the
validation losses. More speci�cally, the checkpoint that pe�orms the best on zero-shot AUC,
image-text matching loss, and contrastive loss was used for zero/data-e�cient and semantic
search, while the checkpoint that pe�orms the best on image-grounded text generation was
used for initial checkpoint for phase 2 training.

In the second phase of ELIXR-B training, 32 replicas of PaLM2 S were launched as inference
servers, each on 8 TPUv3 cores. When called for given inputs (the output query tokens from the
Q-Former plus any additional text tokens), the server provides back the gradients (based on the
language modeling loss) which can be backpropagated through the Q-Former. For this phase, a
batch size of 32 was used, 1 per inference server replica. Constant learning rate of 5e-4 was
used with the Adam optimizer (beta1 of 0.98, beta2 of 0.999, epsilon of 1e-8).

Supplementary tables
Supplementary table 1: Prompts used for zero-shot classi�cation. We adopt the
prompting strategy developed by CheXzero23.
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Condition Positive prompts Negative prompts

Enlarged
cardiomediastinum

widened cardiomediastinum
no acute cardiopulmonary process
cardiomediastinal silhoue�e is normal

Cardiomegaly
mild cardiomegaly
moderate cardiomegaly
severe cardiomegaly

hea� size is normal
no acute cardiopulmonary process
normal study

Lung lesion
lytic lesion
cavitary lesion
parenchymal lesion

no acute cardiopulmonary process

Airspace opacity
bilateral opacities
basal opacity

no focal opacity
lung volumes are normal

Edema
mild pulmonary edema
moderate pulmonary edema
severe pulmonary edema

no pulmonary edema
no acute cardiopulmonary process
normal study

Consolidation suggestive of consolidation normal study

Pneumonia suggestive of pneumonia
lungs are clear
no acute cardiopulmonary process

Atelectasis
plate atelectasis
subsegmental atelectasis

lungs are clear
no acute cardiopulmonary process
normal study

Pneumothorax apical pneumothorax no pneumothorax

Pleural e�usion
le� pleural e�usion
right pleural e�usion
bilateral pleural e�usions

no acute cardiopulmonary process
normal study

Pleural other
blunting of costophrenic angle
pleural thickening

no acute cardiopulmonary process

Fracture rib fractures no acute cardiopulmonary process

Suppo� Devices

monitoring and suppo� devices
NG tube
ET tube
catheter
PIC line

no acute cardiopulmonary process



Supplementary table 2: Queries used for semantic search and the ELIXR pe�ormance
using normalized discounted cumulative gain at �ve (NDCG@5).

Topic Queries
NDCG@5
ELIXR-C

NDCG@5
ELIXR-B

NDCG@5
MedCLIP

Single
�nding

Pneumothorax 0.131 0.214 0.0

Pneumonia 0.927 1.0 0.0

Central venous catheter 1.0 1.0 0.447

Nasogastric tube 0.869 1.0 0.699

Endotracheal tube 1.0 1.0 0.146

Fracture 0 0 0.301

Pacemaker 0.723 1.0 0.146

Laterality

Le� Pneumothorax 0.723 0.83 0.5

Right pleural e�usion 1.0 1.0 1.0

Le� Pneumonia 0.769 1.0 0.765

Severity

Small pleural e�usion 0.616 0.446 0.777

Large Pneumothorax 0.066 0.254 0.0

Moderate Pulmonary edema 0.5 1.0 0.927

Moderate Cardiomegaly 0.927 1.0 0.934

Nuanced
features

Small right pleural e�usion, no le� pleural e�usion 0.68 1.0 0

Mild right Pneumonia 0.786 0.449 0.764

Loculated pleural e�usion 0.478 0.246 0.488

Multiple focal lung opacities 1.0 1.0 0.746

Nasogastric tube reaches stomach 0.701 1.0 0.699



Supplementary table 3: Prompts used for MIMIC-CXR ground truthing. Keywords for
selecting candidates for MIMIC-CXR repo�s followed by prompts used to determine if the given
condition exists. These were used to select candidates for con�rmation by a board ce�i�ed
thoracic radiologist (CL).

Condition Key Words

atelectasis atelectasis

cardiomegaly
cardiomegaly
cardiac silhoue�e

catheter
central venous catheter
central line
picc

fracture
fracture
acute fracture
fx

hilar enlargement hilar enlargement

lung opacity

lung opacity
lung opacities
in�ltrate
pneumonia
atelectasis
consolidation
airspace opacity
airspace opacities

mediastinal widening
abnormal mediastinal widening
widened mediastinum
widened

nodule
lung nodule
nodule
nodular opacity

pleural e�usion pleural e�usion

pneumonia pneumonia

pneumothorax pneumothorax

pulmonary edema
pulmonary edema
pulmonary vascular congestion

tube
endotracheal tube
enteric tube
ng



og
feeding tube
et tube

Prompt used with above text on Med-PaLM 2

All key words except cardiac silhoue�e

You are a helpful medical knowledge assistant. Provide useful, complete, concise, and
scienti�cally-grounded queries to radiology repo�s.
Does this repo� mention that the patient has a {keyword}? Repo�:{description}

cardiac silhoue�e

You are a helpful medical knowledge assistant. Provide useful, complete, concise, and
scienti�cally-grounded queries to radiology repo�s.
Does this repo� mention that the patient has a cardiac silhoue�e that is enlarged? Repo�:{description}



Supplementary table 4: Questions used for visual question answering evaluation on
MIMIC-CXR test cases. For each case, the model was queried with a �ndings-speci�c set of
questions, depending on the corresponding label in the MIMIC CXR JPG dataset being set to 1.0,
with questions covering the condition’s presence, location, and severity, size or type. An
additional two �ndings-independent questions were asked per case, covering the presence of
other conditions. For cases with none of the listed �ve MIMIC labels being set to 1.0, three
label-independent questions were asked.

Finding Questions the model was queried with Question type

Pneumothorax

Is a pneumothorax present ?
Is a pneumothorax present in this image ? Presence

Where is pneumothorax present ? Location

What is the size of pneumothorax, if present ? Size/Severity/Type

Pleural E�usion

Does the patient have a pleural e�usion ?
Is a pleural e�usion present in this image ? Presence

What is the location of the pleural e�usion, if present ? Location

What is the size of pleural e�usion, if present ? Size/Severity/Type

Edema

Is a pulmonary edema present in this image ?
Is there evidence of a pulmonary edema ? Presence

Where is pulmonary edema present ? Location

What is the severity of the pulmonary edema, if present ?
What is the type of the pulmonary edema, if present ? Size/Severity/Type

Consolidation OR
Pneumonia

Is a lung consolidation or pneumonia present in this image ? Presence

What is the location of the lung consolidation or
pneumonia, if present ? Location

Lung Lesion

Are lung nodules or a mass present?
Does the patient have lung nodules or a mass ? Presence

Where are lung nodules or a mass located ? Location

Finding-
independent

What abnormalities are seen within the lungs ?
Does the patient have cardiomegaly ?
What is the pathology ?
Is atelectasis present in this image ?
Is a pneumothorax present ?
Is a pneumothorax present in this image ?
Does the patient have a pleural e�usion ?
Is a pleural e�usion present in this image ?
Is a pulmonary edema present in this image ?
Is there evidence of a pulmonary edema ?
Is a lung consolidation or pneumonia present in this image ?
Is pneumonia present ?
Are lung nodules or a mass present?
Does the patient have lung nodules or a mass ?

Presence



Does the patient have lung opacity ?
Is a radiopaque foreign body or pacemaker present ?
Are there any �ndings ?
Is a hiatal hernia present ?
Are there any signs of interstitial �brosis in the lungs ?
Are there any notable abnormalities in the imaged upper
abdomen ?
Is there evidence of an endotracheal tube ?
Is a central venous catheter present ?
Is there evidence of a nasogastric or orogastric tube ?
Is a hilar enlargement present in this image ?
Is a mediastinal widening present in this image ?
Does the patient have a skeletal fracture ?



Supplementary table 5: Visual question answering evaluation scoring rubric. De�nition of
correctness scores used for assessing model answers against expected answers (for VQA-RAD)
or the CXR image and/or repo� (for MIMIC test set) in visual question answering by radiologist.

Summary Score Details Score

Correct

LLM-provided answer either:
● is an exact match to the ground truth answer.
● contains additional and still accurate information above what

the ground truth speci�es
● is another diagnosis consistent with the image that also

answers the question. e.g. the associated image shows two
potential diagnoses and the predicted answer provides the
diagnosis not present in the ground truth, and the question
did not specify which diagnosis it was looking for.

● is a rephrasing of the ground truth answer such that a
patient’s diagnosis would not di�er in treatment from the
ground truth. e.g. a predicted answer of “lobe collapse” with
ground truth of “pneumothorax” would be counted as a
correct prediction.

1.0

Pa�ially
Correct

LLM-provided answer has correct information but is in �awed in one
of the following ways:

● the answer omits some key details (e.g. laterality, location)
asked by the question and present in the ground truth.

● the answer provides incorrect key details, but the underlying
condition is still accurate.

0.5

Incorrect

LLM-provided answer is either:
● entirely inaccurate.
● does not respond to the question or appears to answer a

di�erent one.
● is missing an answer.
● is internally inconsistent.

0.0

Ambiguous
LLM-provided answer cannot be compared to the ground truth. e.g. a
ground-truth answer of “unsure” or “ambiguous” does not provide
enough information to compare against.

N/A



Supplementary table 6: Methodology for altering impressions for repo� quality assurance
evaluation. Here we describe the speci�c alterations that were made to cases associated with
each �nding for the quality assurance task.

Alteration Primary Finding Alteration rule

No change (control) All No change

Change laterality All except No Finding
and Edema

If the laterality of the primary �nding is le�-sided, replace
to indicate right-sided or vice versa. Do not change
laterality of any other �nding. Cases with bilateral primary
�ndings are excluded from this alteration category.

Remove major �nding All except No Finding

Remove all references to the primary �nding and indicate
either that there is “no evidence” of the �nding or that the
�nding “has resolved,” whichever is more appropriate in
the context of the remaining impression. Retain content
that relates to other �ndings. If no �ndings remain, change
impression to read, “No acute cardiopulmonary process.”

Add major �nding

No Finding Add “Medium right pleural e�usion.” Remove any
sentences indicating the repo� is normal/clear.

Pneumothorax Add: “Malpositioned endotracheal tube.”

Pleural E�usion Add: “Approximately 1 cm nodule in mid right lung.”

Edema Add: “Several acute displaced rib fractures.”

Consolidation or
Pneumonia Add: “Large le� pleural e�usion.”

Lung Lesion Add: “Moderate right pneumothorax.”



Supplementary table 7: Scoring rubric for quality assurance large language model (LLM)
output. Here we show the detailed scoring rubric that was used by the board-ce�i�ed thoracic
radiologist (CL) to assess the LLM output.

Impression type being analyzed LLM assessment by board-certi�ed thoracic
radiologist (CL) Score

Control (no change) LLM suggests that impression is correct 1

Control (no change)

LLM suggests a problem with the impression
where the suggestion is correct or possibly
correct but not important for case management
(e.g., “report failed to characterize heart size”)

1

Control (no change)
LLM suggests a problem with the impression
where the suggestion is correct and possibly
important for case management

Exclude
as this
was not a
valid
control

Control (no change) LLM suggests a problem with the impression
where the suggestion is incorrect 0

Remove primary �nding LLM suggests that impression is correct 0

Remove primary �nding
LLM does not identify the primary �nding that
was removed (even if it makes any other
suggestion that is correct or possibly correct)

0

Remove primary �nding LLM identi�es the primary �nding that was
removed 1

Adding incorrect �nding LLM suggests that impression is correct 0

Adding incorrect �nding
LLM does not correctly identify the added �nding
(even if it makes any other suggestion that is
correct or possibly correct)

0

Adding incorrect �nding LLM correctly identi�es the added �nding 1

Swap primary �nding laterality LLM suggests that impression is correct 0

Swap primary �nding laterality

LLM response does not identify the problem with
the laterality of the primary �nding (even if it
makes any other suggestion that is correct or
possibly correct)

0

Swap primary �nding laterality LLM identi�es a problem with the laterality of the
primary �nding 1



Supplementary table 8: Zero-shot classi�cation using ELIXR-C and ELIXR-B across 13
�ndings in the CheXpe� test set. Area under curves (AUCs) with 95% con�dence intervals
are repo�ed. the “No Finding” label is excluded.

Zero-shot

ELIXR-C AUC
[95% CI]

ELIXR-B AUC
[95% CI]

Di�erence ELIXR-B vs.
ELIXR-C [95% CI],

p-value

Largest SupCon
data-e�cient sample
size for which ELIXR-B
is noninferior [95%

CI], p-value

CheXpe�

Atelectasis
0.754

[0.714-0.795]
0.798

[0.759-0.838]
0.042 [0.00, 0.084]

p=0.05272

224316, -0.004
[-0.045, 0.036]

p=0.84095

E�usion
0.930

[0.908-0.951]
0.873

[0.841-0.903]
-0.059 [-0.086,

-0.032] p=0.00001
4096, 0.020 [-0.006,
0.047] p=0.13340

Cardiomegaly
0.891

[0.862-0.919]
0.892

[0.861-0.921]
0.002 [-0.023, 0.026]

p=0.88496

224316, -0.088
[-0.120, -0.056]

p<1e-5

Consolidation
0.875

[0.819-0.922]
0.742

[0.680-0.804]
-0.133 [-0.199,

-0.067] p=0.00008
512, 0.015 [-0.067,
0.096] p=0.72400

Pulmonary
Edema

0.880
[0.843-0.913]

0.915
[0.881-0.942]

0.033 [0.015, 0.052]
p=0.00033

224316, -0.021
[-0.046, 0.005]

p=0.10897

Enlarged
Cardiomediasti

num

0.800
[0.763-0.837]

0.837
[0.803-0.869]

0.035 [0.013, 0.056]
p=0.00195

N/A

Pleural Other
0.729

[0.467-1.000]
0.490

[0.151-0.780]
-0.239 [-0.622, 0.143]

p=0.22031
N/A

Pneumothorax
0.800

[0.630-0.932]
0.846

[0.656-0.980]
0.047 [-0.067, 0.160]

p=0.42131
N/A

Suppo�
Devices

0.894
[0.865-0.919]

0.865
[0.835-0.892]

-0.027 [-0.047,
-0.007] p=0.00712

N/A

Airspace
Opacity

0.888
[0.857-0.915]

0.908
[0.882-0.931]

0.021 [0.000, 0.041]
p=0.04913

N/A

Lung Lesion
0.747

[0.659-0.838]
0.798

[0.671-0.914]
0.049 [-0.064, 0.163]

p=0.39248
N/A



Pneumonia
0.881

[0.833-0.930]
0.828

[0.734-0.914]
-0.054 [-0.140,
0.033] p=0.22251

N/A

Fracture
0.637

[0.444-0.876]
0.395

[0.173-0.679]
-0.242 [-0.637, 0.153]

p=0.22950
N/A



Supplementary table 9: Data-e�cient classi�cation pe�ormance comparison between
ELIXR-B and ELIXR-C. (a) CheXpe�, (b) CXR-14. Delong’s test results comparing data-e�cient
pe�ormance of ELIXR-B vs. ELIXR-C at matching dataset sizes for CheXpe� and Chest X-ray14.
Bold for ELIXR-B’s outpe�ormance being statistically signi�cant. Red if ELIXR-C outpe�ormed
ELIXR-B.

(a)

CheXpe� Di�erence between ELIXR-B and ELIXR-C

Sample size 64 512 4096 32768 224316

Atelectasis
0.057 [-0.006,

0.119] p=0.07509

0.045 [0.005,
0.085]

p=0.02870

0.021 [-0.015,
0.057]

p=0.24958

0.020 [-0.013,
0.053] p=0.23971

-0.001 [-0.027,
0.026]

p=0.95679

Cardiomegaly
0.098 [0.052,

0.144]
p=0.00003

0.040 [0.006,
0.074] p=0.02128

0.032 [-0.001,
0.066]

p=0.05489

0.019 [0.000,
0.038]

p=0.04469

0.012 [-0.012,
0.035]

p=0.32533

Consolidation
0.042 [-0.075,

0.159] p=0.48560
0.025 [-0.066,

0.117] p=0.59087

-0.002 [-0.045,
0.041]

p=0.91520

0.005 [-0.036,
0.047]

p=0.79792

0.029 [-0.009,
0.068]

p=0.13381

E�usion
0.001 [-0.023,

0.025] p=0.95793
-0.001 [-0.020,
0.018] p=0.89187

0.002 [-0.013,
0.017]

p=0.79330

0.007 [-0.009,
0.022]

p=0.41349

-0.004 [-0.017,
0.009]

p=0.55608

Pulmonary edema
-0.006 [-0.053,
0.041] p=0.81119

0.000 [-0.029,
0.029] p=0.99372

0.007 [-0.017,
0.031]

p=0.57298

0.005 [-0.013,
0.022] p=0.61078

0.006 [-0.017,
0.029]

p=0.59233

(b)

CXR-14 Di�erence between ELIXR-B and ELIXR-C

Sample size 64 512 4096 32768 68801 674533

Airspace opacity
0.035 [0.023,
0.047] p<1e-5

0.019 [0.010,
0.029]

p=0.00007

0.016 [0.009,
0.022] p<1e-5

0.010 [0.004,
0.016]

p=0.00086

-0.001
[-0.007,
0.005]

p=0.77917

Consolidation
0.015 [0.001,

0.030]
p=0.03916

0.010 [-0.001,
0.021]

p=0.06217

0.005 [-0.001,
0.012]

p=0.09394

0.006 [0.000,
0.013]

p=0.04882

0.005
[-0.002,
0.013]

p=0.12789

E�usion

-0.009
[-0.014,
-0.003]

p=0.00178

-0.000
[-0.005, 0.005]

p=0.99721

-0.003
[-0.006, 0.001]

p=0.15106

-0.002
[-0.005,
0.000]

p=0.10230

-0.004
[-0.006,
-0.001]

p=0.01593

Fracture
0.004 [-0.081,

0.090]
p=0.92169

-0.004 [-0.076,
0.068]

p=0.91167

0.012 [-0.067,
0.091]

p=0.76612

-0.016 [-0.084,
0.052]

p=0.64405

-0.035
[-0.099,
0.028]

p=0.27689



Pneumothorax
0.067 [0.032,

0.102]
p=0.00021

-0.030 [-0.059,
-0.001]

p=0.04248

-0.012 [-0.036,
0.012]

p=0.31538

0.007 [-0.005,
0.020]

p=0.24105

0.007
[-0.006,
0.020]

p=0.30800

Pulmonary edema
-0.005

[-0.028, 0.017]
p=0.63723

0.019 [0.006,
0.033]

p=0.00459

-0.007 [-0.016,
0.002]

p=0.13283

-0.001 [-0.007,
0.004]

p=0.68002

-0.000
[-0.006,
0.006]

p=0.99304



Supplementary table 10: Data-e�cient classi�cation pe�ormance comparison between
ELIXR-B and supervised contrastive learning (SupCon) by sample size. (a) CheXpe�, (b)
CXR-14. AUC di�erences between SupCon and ELIXR-B pretraining by sample sizes. Values in
each cell represent the di�erence in AUC, with 95% CIs in square braces, and p-values. Bold
indicates where the ELIXR-B approach pe�orms noninferior (at a margin of 0.05) to SupCon at a
smaller sample size.

(a)

CheXpe�

Sample Size
ELIXR-B

64 512 4096 32768 224316

Sample size
SupCon

Atelectasis

224316
-0.048 [-0.094,

-0.002]
p=0.04094

-0.051 [-0.088,
-0.015]

p=0.00613

-0.013 [-0.048,
0.023]

p=0.47990

0.007 [-0.009,
0.022]

p=0.39980

32768
-0.025 [-0.076,

0.026]
p=0.33903

-0.028 [-0.073,
0.017]

p=0.21884

0.010 [-0.035,
0.056]

p=0.65029

0.034 [0.002,
0.066]

p=0.04019

4096
-0.011 [-0.058,

0.037]
p=0.66183

-0.014 [-0.054,
0.026]

p=0.49807

0.044 [0.012,
0.076]

p=0.00665

0.048 [0.019,
0.077] p=0.00114

512
0.039 [-0.003,

0.081]
p=0.07230

0.074 [0.034,
0.114] p=0.00032

0.093 [0.053,
0.134] p<1e-5

0.098 [0.057,
0.138] p<1e-5

64
0.121 [0.066,

0.177]
p=0.00002

0.160 [0.108,
0.212] p<1e-5

0.179 [0.126,
0.232] p<1e-5

0.183 [0.132,
0.235] p<1e-5

Cardiomegaly

224316
-0.057 [-0.111,

-0.003]
p=0.03936

-0.018 [-0.062,
0.027]

p=0.43275

-0.011 [-0.047,
0.025]

p=0.55874

-0.004 [-0.027,
0.020]

p=0.74519

32768
-0.038 [-0.094,
0.017] p=0.17618

0.001 [-0.043,
0.045]

p=0.97401

0.008 [-0.026,
0.042]

p=0.65056

0.029 [0.008,
0.051]

p=0.00653

4096
-0.018 [-0.066,

0.029]
p=0.45020

0.021 [-0.013,
0.054]

p=0.22596

0.035 [-0.002,
0.071]

p=0.06508

0.049 [0.016,
0.083]

p=0.00371

512
0.013 [-0.034,

0.061]
p=0.58649

0.059 [0.020,
0.099]

p=0.00338

0.066 [0.022,
0.110] p=0.00317

0.081 [0.038,
0.124]

p=0.00023

64
0.123 [0.068,

0.178] p=0.00001
0.130 [0.083,
0.177] p<1e-5

0.137 [0.082,
0.192] p<1e-5

0.152 [0.099,
0.205] p<1e-5

Consolidation
224316

-0.095 [-0.179,
-0.011]

p=0.02671

-0.039 [-0.105,
0.027]

p=0.25086

0.001 [-0.056,
0.058]

p=0.97076

0.012 [-0.021,
0.044]

p=0.48487

32768
-0.075 [-0.155,

0.006]
-0.018 [-0.084,

0.048]
0.021 [-0.034,

0.077]
0.033 [-0.009,

0.074] p=0.12735



p=0.06871 p=0.58336 p=0.44896

4096
-0.058 [-0.146,

0.030]
p=0.19550

-0.002 [-0.060,
0.056]

p=0.94469

0.048 [-0.007,
0.104] p=0.08743

0.049 [-0.000,
0.098]

p=0.05150

512
0.011 [-0.096,

0.117]
p=0.84267

0.107 [0.033,
0.180]

p=0.00450

0.117 [0.036,
0.199]

p=0.00494

0.118 [0.036,
0.200]

p=0.00465

64
0.175 [0.081,

0.268]
p=0.00026

0.214 [0.134,
0.295] p<1e-5

0.225 [0.139,
0.311] p<1e-5

0.226 [0.142,
0.309] p<1e-5

Pleural e�usion

224316
-0.078 [-0.115,

-0.042]
p=0.00002

-0.044 [-0.070,
-0.018]

p=0.00095

0.002 [-0.019,
0.023]

p=0.83881

0.001 [-0.014,
0.017]

p=0.89296

32768
-0.071 [-0.107,

-0.035]
p=0.00011

-0.037 [-0.063,
-0.011]

p=0.00583

0.009 [-0.011,
0.030]

p=0.36040

0.012 [-0.001,
0.026]

p=0.07923

4096
-0.061 [-0.093,

-0.029]
p=0.00021

-0.026 [-0.048,
-0.005]

p=0.01582

0.019 [0.004,
0.033] p=0.01237

0.022 [0.003,
0.042]

p=0.02590

512
-0.025 [-0.059,

0.010]
p=0.16249

0.056 [0.027,
0.084]

p=0.00012

0.055 [0.027,
0.082]

p=0.00009

0.059 [0.027,
0.091]

p=0.00032

64
0.077 [0.038,

0.115]
p=0.00009

0.123 [0.085,
0.161] p<1e-5

0.122 [0.082,
0.161] p<1e-5

0.126 [0.084,
0.167] p<1e-5

Pulmonary
edema

224316
-0.066 [-0.107,

-0.026]
p=0.00130

-0.036 [-0.069,
-0.003]

p=0.03056

-0.011 [-0.031,
0.009]

p=0.28688

-0.003 [-0.019,
0.014]

p=0.74628

32768
-0.048 [-0.087,

-0.010]
p=0.01442

-0.018 [-0.054,
0.018]

p=0.33455

0.007 [-0.018,
0.032]

p=0.57217

0.029 [0.006,
0.051] p=0.01272

4096
-0.032 [-0.068,

0.005]
p=0.09393

-0.001 [-0.038,
0.036]

p=0.94866

0.032 [0.009,
0.055]

p=0.00608

0.045 [0.018,
0.073] p=0.00114

512
-0.006 [-0.040,

0.029]
p=0.75042

0.050 [0.018,
0.082]

p=0.00200

0.058 [0.025,
0.091]

p=0.00049

0.071 [0.038,
0.105]

p=0.00003

64
0.049 [0.008,

0.089]
p=0.01800

0.074 [0.039,
0.109]

p=0.00003

0.082 [0.046,
0.118] p<1e-5

0.095 [0.058,
0.133] p<1e-5

(b)

CXR-14
Sample Size
ELIXR-B

64 512 4096 32768 68801 674533

Sample size



SupCon

Airspace
opacity

674533
-0.047
[-0.058,

-0.035] p<1e-5

-0.041
[-0.054,

-0.029] p<1e-5

-0.033
[-0.043,

-0.024] p<1e-5

-0.009
[-0.015,
-0.003]

p=0.00445

32768
-0.028
[-0.039,

-0.017] p<1e-5

-0.023
[-0.036,
-0.010]

p=0.00039

-0.015 [-0.022,
-0.008]

p=0.00003

0.027 [0.019,
0.036] p<1e-5

4096

0.010
[-0.001,
0.022]

p=0.08267

0.015 [0.002,
0.028]

p=0.02128

0.048 [0.036,
0.059] p<1e-5

0.066 [0.053,
0.078] p<1e-5

512
0.018 [0.013,
0.024] p<1e-5

0.031 [0.019,
0.044] p<1e-5

0.056 [0.043,
0.069] p<1e-5

0.074 [0.060,
0.087] p<1e-5

64
0.041 [0.027,
0.055] p<1e-5

0.049 [0.036,
0.062] p<1e-5

0.073 [0.059,
0.088] p<1e-5

0.091 [0.076,
0.107] p<1e-5

Fracture

674533

-0.057
[-0.141,
0.027]

p=0.18287

-0.051
[-0.138,
0.036]

p=0.25343

-0.021
[-0.093,
0.052]

p=0.57805

0.003
[-0.070,
0.076]

p=0.92861

32768

-0.059
[-0.134,
0.016]

p=0.12386

-0.053
[-0.128,
0.023]

p=0.17258

-0.022
[-0.104,
0.060]

p=0.59567

0.014 [-0.056,
0.083]

p=0.69461

4096

-0.014
[-0.070,
0.043]

p=0.63317

-0.007
[-0.100,
0.085]

p=0.87417

0.047 [-0.022,
0.116]

p=0.18368

0.059 [-0.016,
0.133]

p=0.12069

512

-0.006
[-0.087,
0.074]

p=0.87682

0.030 [-0.048,
0.109]

p=0.45057

0.054 [-0.029,
0.137]

p=0.20016

0.066 [-0.020,
0.153]

p=0.13367

64
0.028 [-0.064,

0.121]
p=0.54877

0.058 [-0.046,
0.163]

p=0.27171

0.082 [-0.008,
0.173]

p=0.07281

0.095 [-0.003,
0.193]

p=0.05868

Pneumothorax

674533
-0.232 [-0.272,
-0.191] p<1e-5

-0.114 [-0.149,
-0.079] p<1e-5

-0.104 [-0.133,
-0.075] p<1e-5

-0.039
[-0.062,
-0.016]

p=0.00107

32768
-0.172 [-0.209,
-0.134] p<1e-5

-0.054
[-0.093,
-0.015]

p=0.00676

-0.045
[-0.075,
-0.014]

p=0.00428

0.066 [0.044,
0.088] p<1e-5

4096
-0.092 [-0.131,
-0.053] p<1e-5

0.026 [-0.012,
0.064]

p=0.18491

0.101 [0.073,
0.130] p<1e-5

0.146 [0.114,
0.178] p<1e-5



512

0.010
[-0.038,
0.059]

p=0.67914

0.137 [0.097,
0.178] p<1e-5

0.203 [0.160,
0.246] p<1e-5

0.248 [0.209,
0.287] p<1e-5

64
0.178 [0.126,
0.231] p<1e-5

0.188 [0.148,
0.227] p<1e-5

0.253 [0.204,
0.303] p<1e-5

0.298 [0.256,
0.341] p<1e-5

Consolidation

68801
-0.051 [-0.061,
-0.041] p<1e-5

-0.021
[-0.030,

-0.012] p<1e-5

-0.010 [-0.016,
-0.004]

p=0.00222

0.004
[-0.000,
0.008]

p=0.06665

32768
-0.050
[-0.060,

-0.039] p<1e-5

-0.019 [-0.027,
-0.012] p<1e-5

-0.009
[-0.014,
-0.003]

p=0.00274

0.004
[-0.000,
0.009]

p=0.08012

4096
-0.032
[-0.042,

-0.022] p<1e-5

-0.002
[-0.009,
0.005]

p=0.60796

0.023 [0.016,
0.030] p<1e-5

0.022 [0.015,
0.028] p<1e-5

512
-0.014 [-0.019,

-0.009]
p<1e-5

0.027 [0.018,
0.036] p<1e-5

0.041 [0.031,
0.050] p<1e-5

0.040 [0.030,
0.049] p<1e-5

64
0.070 [0.056,
0.083] p<1e-5

0.080 [0.069,
0.092] p<1e-5

0.094 [0.081,
0.107] p<1e-5

0.093 [0.080,
0.106] p<1e-5

Pleural e�usion

68801
-0.090
[-0.097,

-0.083] p<1e-5

-0.073
[-0.079,

-0.067] p<1e-5

-0.033
[-0.038,

-0.028] p<1e-5

-0.004
[-0.006,
-0.001]

p=0.00524

32768
-0.082
[-0.089,

-0.075] p<1e-5

-0.065 [-0.071,
-0.059] p<1e-5

-0.025
[-0.030,

-0.021] p<1e-5

0.011 [0.008,
0.014] p<1e-5

4096
-0.051 [-0.057,
-0.045] p<1e-5

-0.033
[-0.039,

-0.028] p<1e-5

0.036 [0.031,
0.041] p<1e-5

0.043 [0.038,
0.047] p<1e-5

512

0.001
[-0.006,
0.007]

p=0.82577

0.058 [0.052,
0.064] p<1e-5

0.087 [0.080,
0.094] p<1e-5

0.094 [0.087,
0.101] p<1e-5

64
0.046 [0.041,
0.051] p<1e-5

0.086 [0.079,
0.093] p<1e-5

0.115 [0.108,
0.123] p<1e-5

0.122 [0.115,
0.129] p<1e-5

Pulmonary
edema

68801
-0.142 [-0.157,
-0.127] p<1e-5

-0.090 [-0.101,
-0.078] p<1e-5

-0.021 [-0.028,
-0.014] p<1e-5

-0.003
[-0.007,
0.002]

p=0.24640

32768
-0.132 [-0.146,
-0.117] p<1e-5

-0.079
[-0.090,

-0.068] p<1e-5

-0.010 [-0.017,
-0.003]

p=0.00367

0.013 [0.008,
0.017] p<1e-5

4096 -0.100 [-0.117, -0.048 0.039 [0.030, 0.044 [0.035,



-0.084] p<1e-5 [-0.062,
-0.034] p<1e-5

0.048] p<1e-5 0.053] p<1e-5

512

-0.030
[-0.050,
-0.010]

p=0.00342

0.091 [0.076,
0.106] p<1e-5

0.110 [0.095,
0.124] p<1e-5

0.114 [0.099,
0.129] p<1e-5

64
0.053 [0.036,
0.069] p<1e-5

0.121 [0.107,
0.136] p<1e-5

0.140 [0.124,
0.155] p<1e-5

0.144 [0.129,
0.159] p<1e-5



Supplementary �gures
Supplementary �gure 1: Suspect positive or negative ground truth MIMIC labels as
identi�ed by the query to Med-PaLM 2 truthed by a board ce�i�ed radiologist. Green
represents correctly identi�ed errors or lack of labels in MIMIC labels by Med-PaLM 2. Blue
represents correct MIMIC labels. Red represents errors identi�ed in both MIMIC and MedPalm2
based labels while gray represents indeterminate labels. A total of 1568 labels were �agged, of
which 1092 were modi�ed.



Supplementary �gure 2: Data-e�cient classi�cation pe�ormance between models
per-dataset and per-�nding using di�erent training set sample size. Evaluation on (a)
CheXpe�, (b) CXR-14. Signi�cance test results are available in Supplementary tables 9, 10.

(a)

(b)




