
Nature Machine Intelligence

nature machine intelligence

https://doi.org/10.1038/s42256-023-00692-8Article

Explaining machine learning models with 
interactive natural language conversations 
using TalkToModel

Dylan Slack    1 , Satyapriya Krishna    2, Himabindu Lakkaraju2,3,4 & 
Sameer Singh1,4

Practitioners increasingly use machine learning (ML) models, yet models 
have become more complex and harder to understand. To understand 
complex models, researchers have proposed techniques to explain model 
predictions. However, practitioners struggle to use explainability methods 
because they do not know which explanation to choose and how to interpret 
the explanation. Here we address the challenge of using explainability 
methods by proposing TalkToModel: an interactive dialogue system that 
explains ML models through natural language conversations. TalkToModel 
consists of three components: an adaptive dialogue engine that interprets 
natural language and generates meaningful responses; an execution 
component that constructs the explanations used in the conversation; and 
a conversational interface. In real-world evaluations, 73% of healthcare 
workers agreed they would use TalkToModel over existing systems for 
understanding a disease prediction model, and 85% of ML professionals 
agreed TalkToModel was easier to use, demonstrating that TalkToModel is 
highly effective for model explainability.

Due to their strong performance, machine learning (ML) models 
increasingly make consequential decisions in several critical domains, 
such as healthcare, finance and law. However, state-of-the-art ML 
models, such as deep neural networks, have become more complex 
and hard to understand. This dynamic poses challenges in real-world 
applications for model stakeholders who need to understand why 
models make predictions and whether to trust them. Consequently, 
practitioners have often turned to inherently interpretable ML mod-
els for these applications, including decision lists and sets1,2 and 
generalized additive models3–5, which people can more easily under-
stand. Nevertheless, black-box models are often more flexible and 
accurate, motivating the development of post hoc explanations that 
explain the predictions of trained ML models. These explainability 
techniques either fit faithful models in the local region around a 
prediction or inspect internal model details, such as gradients, to 
explain predictions6–11.

Yet, recent work suggests that practitioners often have diffi-
culty using explainability techniques12–15. These challenges are due 
to difficulty in figuring out which explanations to implement, how to 
interpret the explanation and answering follow-up questions beyond 
the initial explanation. In the past, researchers have proposed sev-
eral point-and-click dashboard techniques to help overcome these 
issues, such as the Language Interpretability Tool16, which is designed 
to understand natural language processing models and the What-If 
Tool17—a tool aimed at performing counterfactual analyses for models. 
However, these methods still require a high level of expertise, because 
users must know which explanations to run, and lack the flexibility to 
support arbitrary follow-up questions that users might have. Overall, 
understanding ML models through simple and intuitive interactions 
is a key bottleneck in adoption across many applications.

Natural language dialogues are a promising solution for support-
ing broad and accessible interactions with ML models due to their ease 
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performs the parsing by treating the task of translating user utterances 
into the programming language as a seq2seq learning problem, where 
the user utterances are the source and parses in the programming 
language are the targets24. In addition, the TalkToModel language com-
bines operations for explanations, ML error analyses, data manipula-
tion and descriptive text into a single language capable of representing 
a wide variety of potential conversation topics most model explainabil-
ity needs (an overview of the different operations is provided in Fig. 3). 
To support the system adapting to any dataset and model, we introduce 
lightweight adaption techniques to fine-tune LLMs to perform the 
parsing, enabling strong generalization to new settings. Second, we 
introduce an execution engine that runs the operations in each parse. 
To reduce the burden of users deciding which explanations to run, 
we introduce methods that automatically select explanations for the 
user. In particular, this engine runs many explanations, compares their 
fidelities and selects the most accurate ones. Finally, we construct a 
text interface where users can engage in open-ended dialogues using 
the system, enabling anyone, including those with minimal technical 
skills, to understand ML models.

Results
In this section, we demonstrate that TalkToModel accurately under-
stands users in conversations by evaluating its language understanding 
capabilities on ground-truth data. Next, we evaluate the effectiveness 
of TalkToModel for model understanding by performing a real-world 
human study on healthcare workers (for example, doctors and nurses) 
and ML practitioners, where we benchmark TalkToModel against exist-
ing explainability systems. We find users both prefer and are more effec-
tive using TalkToModel than traditional point-and-click explainability 
systems, demonstrating its effectiveness for understanding ML models.

Language understanding
Here we quantitatively assess the language understanding capabilities 
of TalkToModel by creating gold parse datasets and evaluating the 
system’s accuracy on these data.

of use, capacity and support for continuous discussion. However, 
designing a dialogue system that enables a satisfying model under-
standing experience introduces several challenges. First, the system 
must handle many conversation topics about the model and data while 
facilitating natural conversation flow18. For instance, these topics may 
include explainability questions like the most important features for 
predictions and general questions such as data statistics or model 
errors. Further, the system must work for various model classes and 
data, and it should understand language usage across different set-
tings19. For example, participants will use different terminology in 
conversations about loan prediction than disease diagnosis. Last, the 
dialogue system should generate accurate responses that address the 
users’ core questions20,21. In the literature, researchers have suggested 
some prototype designs for generating explanations using natural 
language. However, these initial designs address specific explanations 
and model classes, limiting their applicability in general conversational 
explainability settings22,23.

In this Article, we address these challenges by introducing TalkTo-
Model: a system that enables open-ended natural language dialogues 
for understanding ML models for any tabular dataset and classifier 
(an overview of TalkToModel is provided in Fig. 1). Users can have 
discussions with TalkToModel about why predictions occur, how the 
predictions would change if the data change and how to flip predic-
tions, among many other conversation topics (an example conversa-
tion is provided in Fig. 2). Further, they can perform these analyses 
on any group in the data, such as a single instance or a specific group 
of instances. For example, on a disease prediction task, users can ask 
‘How important is BMI for the predictions?’ or ‘So how would decreas-
ing the glucose levels by 10 change the likelihood of men older than 
20 having the disease?’. TalkToModel will respond by describing how, 
for instance, BMI is the most important feature for predictions, and 
decreasing glucose will decrease the chance of diabetes by 20%. From 
there, users can engage further in the conversation by asking follow-up 
questions. Conversations with TalkToModel make model explainability 
straightforward because users can talk with the system in natural lan-
guage about the model, and the system will generate useful responses.

To support such rich conversations with TalkToModel, we intro-
duce techniques for both language understanding and model explain-
ability. First, we propose a dialogue engine that parses user text inputs 
(referred to as user utterances) into a structured query language-like 
programming language using a large language model (LLM). The LLM 
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Fig. 1 | Overview of TalkToModel. Instead of writing code, users have 
conversations with TalkToModel as follows. (1) Users supply natural 
language inputs. (2) The dialogue engine parses the input into an executable 
representation. (3) The execution engine runs the operations and the dialogue 
engine uses the results in its response.
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Fig. 2 | A conversation with TalkToModel.  A conversation about diabetes 
prediction, demonstrating the breadth of different conversation points the 
system can discuss.
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Gold parse collection. We construct gold datasets (that is, 
ground-truth (utterance, parse) pairs) across multiple datasets to 
evaluate the language understanding performance of our models. To 
construct these gold datasets, we adopt an approach inspired by ref. 25,  
which constructs a similar dataset for multitask semantic parsing.

Our gold dataset-generation process is as follows. First, we write 
50 (utterance, parse) pairs for the particular task (that is, loan or dia-
betes prediction). These utterances range from simple ‘How likely are 
people in the data to have diabetes?’ to complex ‘If these people were 
not unemployed, what’s the likelihood they are good credit risk? Why?’. 
We include each operation (Fig. 3) at least twice in the parses, to make 
sure that there is good coverage. From there, we ask Mechanical Turk 
workers to rewrite the utterances while preserving their semantic 
meaning to ensure that the ground-truth parse for the revised utterance 
is the same but the phrasing differs. We ask workers to rewrite each pair  
8 times for a total of 400 (utterance, parse) pairs per task. Next, we filter 
out low-quality mturk revisions. We ask the crowd-sourced workers to 
rate the similarity between the original utterance and revised utterance 
on a scale of 1 to 4, where 4 indicates that the utterances have the same 
meaning and 1 indicates that they do not have the same meaning. We 
collect 5 ratings per revision and remove (utterance, parse) pairs that 
score below 3.0 on average. Finally, we perform an additional filtering 
step to ensure data quality by inspecting the remaining pairs ourselves 
and removing any bad revisions.

As we want to evaluate TalkToModel’s capacity to generalize across 
different scenarios, we perform this data collection process across 
three different tasks: Pima Indian Diabetes Dataset26, German credit 
dataset26 and the Correctional Offender Management Profiling for 
Alternative Sanctions (COMPAS) recidivism dataset27. After collect-
ing revisions and ensuring quality, we are left with 200 pairs for the 
German credit dataset, 190 for the diabetes dataset and 146 for the 
COMPAS dataset.

Models. We compare two strategies for using pre-trained LLMs to 
parse user utterances into the grammar: (1) few-shot GPT-J 28 and 

GPT-3.5 models29 and (2) fine-tuned T530. The GPT-J and GPT-3.5 
models are higher capacity and more amenable to be trained by 
in-context learning. This procedure includes examples of the input 
and target from the training prepended to the test instance29,31,32. In 
contrast, the T5 models require traditional fine-tuning on the input 
and target pairs. Consequently, the few-shot approach is quicker 
to set up because it does not require fine-tuning, making it easier 
for users to get started with the system. However, the fine-tuned T5 
leads to improved performance and a better user experience overall 
while taking longer to set up. We expect that fine-tuned T5 leads to 
improved performance overall because it has access to all the training 
data, whereas, the few-shot models are limited by the context window 
size. To train these models through fine-tuning or prompting, we 
generate synthetic (utterance, parse) pairs because it is impractical to  
assume that we can collect ground-truth pairs for every new task 
we wish to use TalkToModel. We provide additional training details  
in Methods.

We evaluate both fine-tuned T5 models and few-shot models on 
the testing data. We additionally implement a naive nearest-neighbours 
baseline, where we select the closest user utterance in the synthetic 
training set according to cosine distance of all-mpnet-base-v2 sen-
tence embeddings and return the corresponding parse33. For the GPT-J 
models, we compare N-shot performance, where N is the number of 
(utterance, parse) pairs from the synthetically generated training sets 
included in the prompt, and sweep over a range of N for each model. 
For the larger models, we have to use relatively smaller N for inference 
to fit on a single 48 GB graphics processing unit.

When parsing the utterances, one issue is that their generations are 
unconstrained and may generate parses outside the grammar, result-
ing in the system failing to run the parse. To ensure the generations 
are grammatical, we constrain the decodings to be in the grammar by 
recompiling the grammar at inference time into an equivalent grammar 
consisting of the tokens in the LLM’s vocabulary 34. While decoding from 
the LLM, we fix the likelihood of ungrammatical tokens to 0 at every 
generation step. Because the GPT-3.5 model must be called through an 
application programming interface, which does not support guided 
decoding, we decode greedily with temperature set to one.

Evaluating the parsing accuracy. To evaluate performance on the 
datasets, we use the exact match parsing accuracy25,35,36. This metric is 
whether the parse exactly matches the gold parse in the dataset. In addi-
tion, we perform the evaluation on two splits of each gold parse dataset, 
in addition to the overall dataset. These splits are the independent and 
identically distributed (IID) and compositional splits. The IID split 
contains (utterance, parse) pairs where the parse’s operations and their 
structure (but not necessarily the arguments) are in the training data. 
The compositional split consists of the remaining parses that are not in 
the training data. Because language models struggle compositionally, 
this split is generally much harder for language models to parse37,38.

Accuracy. We present the results in Table 1. T5 performs better overall 
than the few-shot GPT-J and GPT-3.5 models. Notably, the T5 small 
model performs better than the GPT-J 6B model, which has two orders 
of magnitude more parameters. While the few-shot models underper-
form the fine-tuned T5 models overall, GPT-3.5 is the best-performing 
few-shot model and performs considerably better than the GPT-J mod-
els, particularly in the compositional split. Overall, these results sug-
gest using fine-tuned T5 for the best results, and we use T5 large in our 
human studies.

Utility of explainability dialogues
The results in the previous section show that TalkToModel understands 
user intentions to a high degree of accuracy. In this section, we evaluate 
how well the end-to-end system helps users understand ML models 
compared with current explainability systems.

@ <
<<

k

Filters

Fig. 3 | Overview of the operations supported by TalkToModel.  The operations 
are incorporated into the conversation to generate responses. Note, Conv. refers 
to Conversation operations.
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Study overview. We compare TalkToModel against ‘explainerdash-
board’, one of the most popular open-source explainability dash-
boards39. This dashboard has similar functionality to TalkToModel, 
considering it provides an accessible way to compute explanations 
and perform model analyses. Thus, it is a reasonable baseline. 
Last, we perform this comparison using the diabetes dataset, and 
a gradient-boosted tree trained on the data40. To compare both sys-
tems in a controlled manner, we ask participants to answer general 
ML questions with TalkToModel and the dashboard. Each question 
is about basic explainability and model analysis, and participants 
answer using multiple choice, where one of the options is ‘Could 
not determine’ if they cannot figure out the answer (although it is 
straightforward to answer all the questions with both interfaces). 
For example, questions are about comparing feature importances 
‘Is glucose more important than age for the model’s predictions for 
data point 49?’ or model predictions ‘How many people are predicted 
not to have diabetes but do not actually have it?’ Participants answer 
ten questions in total. We divide the ten questions into two blocks of 
five questions each. Both blocks have similar questions but different 
values to control for memorization (the exact questions are given in 
Supplementary Section A). Participants use TalkToModel to answer 
one block of questions and the dashboard for the other block. In addi-
tion, we provide a tutorial on how to use both systems before showing 
users the questions for the system. Last, we randomize question, block 
and interface order to control for biases due to showing interfaces or 
questions first.

Metrics. Following previous work on evaluating human and ML coor-
dination and trust, we assessed several metrics to evaluate user experi-
ences41–43. We evaluated the following statements along the 1–7 Likert 
scale at the end of the survey:

•	 Easiness: I found the conversational interface easier to use than 
the dashboard interface

•	 Confidence: I was more confident in my answers using the conver-
sational interface than the dashboard interface

•	 Speed: I felt that I was able to more rapidly arrive at an answer 
using the conversational interface than the dashboard interface

•	 Likeliness to use: based on my experience so far with both inter-
faces, I would be more likely to use the conversational interface 
than the dashboard interface in the future

To control for bias associated with the ordering of the terms con-
versational interface and dashboard interface, we randomized their 
ordering. We also measured accuracy and time taken to answer each 
question. Last, we asked to participants to write a short description 
comparing their experience with both interfaces to capture partici-
pants qualitative feedback about both systems.

Recruitment. As TalkToModel provides an accessible way to under-
stand ML models, we expect it to be useful for subject-matter experts 
with a variety of experience in ML, including users without any ML 
experience. As such, we recruited 45 English-speaking healthcare 
workers to take the survey using the Prolific service44 with minimal or 
no ML expertise This group comprises a range of healthcare workers, 
including doctors, pharmacists, dentists, psychiatrists, healthcare 
project managers and medical scribes. The vast majority of this group 
(43) stated they had either no experience with ML or had heard about 
it from reading articles online, while two members indicated they 
had equivalent to an undergraduate course in ML. As another point 
of comparison, we recruited ML professionals with relatively higher 
ML expertise from ML Slack channels and email lists. We received 
13 potential participants, all of which had graduate-course-level 

Table 1 | Exact match parsing accuracy (%) for the three gold datasets, on the IID and compositional splits, and overall

German credit COMPAS Diabetes

IID Compositional Overall IID Compositional Overall IID Compositional Overall

Nearest neighbours 26.2 0.0 16.5 27.4 0.0 21.9 10.9 0.0 8.4

GPT-Neo 1.3B

 10-shot 41.3 4.1 27.5 35.9 0.0 28.8 40.1 7.0 32.6

 20-shot 39.7 0.0 25.0 39.3 0.0 31.5 42.9 2.3 33.7

 30-shot 42.9 0.0 27.0 39.3 0.0 31.5 41.5 4.7 33.2

GPT-Neo 2.7B

 5-shot 38.1 4.1 25.5 35.9 3.4 29.5 46.9 7.0 37.9

 10-shot 38.1 6.8 26.5 40.2 3.4 32.9 40.8 9.3 33.7

 20-shot 39.7 0.0 25.0 39.3 0.0 31.5 42.9 2.3 33.7

GPT-J 6B

 5-shot 51.6 14.9 38.0 51.3 6.9 42.5 55.8 7.0 44.7

 10-shot 57.9 9.5 40.0 49.6 3.4 40.4 53.7 9.3 43.7

GPT-3.5

 10-shot 44.4 28.3 38.5 38.8 13.8 34.9 40.1 16.3 34.7

 20-shot 60.3 41.2 53.5 41.9 17.2 37.0 45.6 23.3 40.5

 30-shot 58.7 43.2 53.0 47.0 24.1 42.7 55.1 32.6 50.0

T5

 Small 61.1 32.4 50.5 71.8 10.3 59.6 77.6 30.2 66.8

 Base 68.3 48.6 61.0 65.0 10.3 54.1 84.4 34.9 73.2

 Large 74.6 44.6 63.5 76.9 24.1 66.4 84.4 51.2 76.8

All the evaluated models except for GPT-3.5 use guided decoding. GPT-3.5 does not use guided decoding because it is not supported through the OpenAI application programming 
interface. The most accurate model is bolded. The fine-tuned T5 models tended to perform better than the few-shot models, and T5 large performed the best. These results demonstrate that 
TalkToModel can understand user intentions with a high degree of accuracy using the T5 models.
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ML experience or higher, and included all of them in the study. We 
received institutional review board approval for this study from the 
University of California, Irvine institutional review board approval 
process and informed consent from participants.

Metric results. A substantial majority of healthcare workers agreed 
that they preferred TalkToModel in all the categories we evaluated 
(Table 2). The same is true for the ML professionals, save for whether 
they were more likely to use TalkToModel in the future, where 53.8% of 
participants agreed they would instead use TalkToModel in the future. 
In addition, participants’ subjective notions around how quickly they 
could use TalkToModel aligned with their actual speed of use, and both 
groups arrived at answers using TalkToModel significantly quicker than 
using the dashboard. The median question answer time (measured at 
the total time taken from seeing the question to submitting the answer) 
using TalkToModel was 76.3 s, while it was 158.8 s using the dashboard.

Participants were also much more accurate and completed ques-
tions at a higher rate (that is, they did not mark ‘Could not determine’) 
using TalkToModel (Table 3). While both healthcare workers and ML 
practitioners clicked ‘Could not determine’ for a quarter of the ques-
tions using the dashboard, this was true for 13.8% of healthcare workers 
and 6.1% of ML professionals using TalkToModel, demonstrating the 
usefulness of the conversational interface. On completed questions, 
both groups were much more accurate using TalkToModel than the 
dashboard. Most surprisingly, although ML professionals agreed that 
they preferred TalkToModel only about half the time, they answered 
all the questions correctly using it, while they only answered 62.5% 
of questions correctly with the dashboard. Finally, we observed that 
TalkToModel’s conversational capabilities were highly effective. There 
were only 6 utterances out of over 1, 000 total utterances that the con-
versational aspect of the system failed to resolve. These failure cases 
generally involved certain discourse aspects like asking for additional 
elaboration (‘more description’).

The largest source of errors for participants using the explainabil-
ity dashboard were two questions concerning the top most important 
features for individual predictions. The errors for these questions 
account for 47.4% of healthcare workers and 44.4% of ML professionals’ 
total mistakes. Solving these tasks with the dashboard requires users to 
perform multiple steps, including choosing the feature importance tab 
in the dashboard, while the streamlined text interface of TalkToModel 
made it much simpler to solve these tasks.

Qualitative results. For the qualitative user feedback, we provide 
representative quotes from similar themes in the responses. Users 
expressed that they could more rapidly and easily arrive at results, 
which could be helpful for their professions.

Displayquote 1. “I prefer the conversational interface because it helps 
arrive at the answer very quickly. This is very useful especially in the 
hospital setting where you have hundreds of patients getting check ups 

and screenings for diabetes because it is efficient and you can work with 
medical students on using the system to help patient outcomes.” P39 
medical worker at a tertiary hospital.

Participants also commented on the user friendliness of TalkTo-
Model and its strong conversational capabilities, stating, “the conversa-
tional [interface] was straight to the point, way easier to use” (P35 nurse) 
and that “the conversational interface is hands-down much easier to 
use… it feels like one is talking to a human” (P45 ML professional). We 
did not find any negative feedback surrounding the conversational 
capabilities of the system. Overall, users expressed strong positive 
sentiment about TalkToModel due to the quality of conversations, 
presentation of information, accessibility and speed of use.

Several ML professionals brought up points that could serve as 
future research directions. Notably, participants stated that they would 
rather look at the data themselves rather than rely on an interface that 
rapidly provides an answer.

Displayquote 2. “I would almost always rather look at the data myself 
and come to a conclusion than getting an answer within seconds.” P11 
ML professional.

In the future, it would be worthwhile including visualizations of 
raw data and analyses performed by the system to increase trust with 
expert users, such as ML professionals, who may be sceptical of the 
high-level answers provided by the system currently.

Discussion
With ML models becoming increasingly complex, there is a need to 
develop techniques to explain model predictions to stakeholders. 
Nevertheless, it is often the case that practitioners struggle to use expla-
nations and frequently have many follow-up questions they wish to 
answer. In this work, we show that TalkToModel makes explainable AI 
accessible to users from a range of backgrounds by using natural lan-
guage conversations. Our experiments demonstrate that TalkToModel 
comprehends users with a high degree of accuracy and can help users 
understand the predictions of ML models much better than existing 
systems can. In particular, we showed that TalkToModel is a highly effec-
tive way for domain experts such as healthcare workers to understand 
ML models, like those applied to disease diagnosis. Lastly, we designed 
TalkToModel to be highly extensible and released the code, data and a 
demo for the system at https://github.com/dylan-slack/TalkToModel, 
making it straightforward for users and researchers to build on the 
system. In the future, it will be helpful to investigate applications of 
TalkToModel ‘in the wild’, such as in doctors’ offices, laboratories or 
professional settings, where model stakeholders could use the system 
to understand their models.

Methods
In this section, we describe the components of TalkToModel. First, we 
introduce the dialogue engine and discuss how it understands user 
inputs, maps them to operations and generates text responses based 
on the results of running the operations. Second, we describe the execu-
tion engine, which runs the operations. Finally, we provide an overview 
of the interface and the extensibility of TalkToModel.

Text understanding
To understand the intent behind user utterances, the system learns to 
translate or parse them into logical forms. These parses represent the 
intentions behind user utterances in a highly expressive and structured 
programming language TalkToModel executes.

Compared with dialogue systems that execute specific tasks by 
modifying representations of the internal state of the conversation45,46, 
our parsing-based approach allows for more flexibility in the conversa-
tions, supporting open-ended discovery, which is critical for model 
understanding. Also, this strategy produces a structured representa-
tion of user utterances instead of open-ended systems that generate 

Table 2 | User study results for respondents that agree 
TalkToModel is better than the dashboard

Agree TalkToModel better (%)

Comparison Healthcare workers ML graduate students

Easiness 82.2 84.6

Confidence 77.7 69.2

Speed 84.4 84.6

Likeliness to use 73.3 53.8

The percentage of respondents that agree (>neutral Likert score) that TalkToModel is better than 
the dashboard in the four comparison questions. A substantial portion of respondents agreed 
TalkToModel is better than the dashboard in all the categories except graduate students and 
‘Likeliness to use’. Still, a majority agreed that TalkToModel was superior in this case.
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unstructured free text47. Having this structured representation of user 
inputs is key for our setting where we need to execute specific opera-
tions depending on the user’s input, which would not be straightfor-
ward with unstructured text.

TalkToModel performs the following steps to accomplish this: (1) 
the system constructs a grammar for the user-provided dataset and 
model, which defines the set of acceptable parses; (2) TalkToModel 
generates (utterance, parse) pairs for the dataset and model; (3) the 
system fine-tunes an LLM to translate user utterances into parses; and 
(4) the system responds conversationally to users by composing the 
results of the executed parse into a response that provides context for 
the results and opportunities to follow up.

Grammar. To represent the intentions behind the user utterances 
in a structured form, TalkToModel relies on a grammar, defining a 
domain-specific language for model understanding. While the user 
utterances themselves will be highly diverse, the grammar creates a way 
to express user utterances in a structured yet highly expressive fashion 
that the system can reliably execute. Compared with approaches that 
treat determining user intentions in conversations as a classification 
problem48,49, using a grammar enables the system to express composi-
tions of operations and arguments that take on many different values, 
such as real numbers, that would otherwise be combinatorially impos-
sible in a prediction setting. Instead, TalkToModel translates user 
utterances into this grammar in a seq2seq fashion, overcoming these 
challenges24. This grammar consists of production rules that include 
the operations the system can run (an overview is provided in Table 3),  
the acceptable arguments for each operation and the relations between 
operations. One complication is that user-provided datasets have dif-
ferent feature names and values, making it hard to define one shared 
grammar between datasets. Instead, we update the grammar based 
on the feature names and values in a new dataset. For instance, if a 
dataset contained only the feature names ‘age’ and ‘income’, these two 
names would be the only acceptable values for the feature argument 
in the grammar.

To ensure that our grammar provides sufficient coverage for 
explainable artificial intelligence (XAI) questions, we verify our gram-
mar supports the questions from the XAI question bank. This question 
bank was introduced in ref. 50 based on interviews with AI product 
designers and includes 31 core, prototypical questions XAI systems 
should answer, excluding socio-technical questions beyond the scope 
of TalkToModel (for example, ‘What are the results of other people 
using the [model]’). The prototypical questions address topics such 
as the input/data to the model (‘What is the distribution of a given 
feature?’), model output (‘What kind of output does the system give?’), 
model performance (‘How accurate are the predictions?’), global 
model behaviour (‘What is the systems overall logic?’), why/why not 
the system makes individual predictions (‘Why is this instance given 
this prediction?’) and what-if or counterfactual questions (‘What 
would the system predict if this instance changes to…?’). To evalu-
ate how well TalkToModel covers these questions, we review each 
question and evaluate whether our grammar can parse it. Overall, 
we find that our grammar supports 30 out of 31 of the prototypical 
questions. We provide a table of each question and corresponding 
parse in Supplementary Tables 6 and 7. Overall, the grammar covers 

the vast majority of XAI related questions, and therefore, has good 
coverage of XAI topics.

Supporting context in dialogues. User conversations with TalkTo-
Model naturally include complex conversational phenomena such as 
anaphora and ellipsis51–53. Meaning, conversations refer back to events 
earlier in the conversation (‘What do you predict for them?’) or omit 
information that must be inferred from conversation (‘Now show me 
for people predicted incorrectly’). However, current language mod-
els parse only a single input, making it hard to apply them in settings 
where the context is important. To support context in the dialogues, 
TalkToModel introduces on a set of operations in the grammar that 
determine the context for user utterances. In contrast with approaches 
that maintain the conversation state using neural representations45,54, 
grammar operations allow for much more trustworthy and dependable 
behaviour while still fostering rich interactions, which is critical for 
high-stakes settings, and similar mechanisms for incorporating gram-
mar predicates across turns have been shown to achieve strong results53. 
In particular, we leverage two operations: previous filter and previous 
operation, which look back in the conversation to find the last filter 
and last operation, respectively. These operations also act recursively. 
Therefore, if the last filter is a previous filter operation, TalkToModel will 
recursively call previous filter to resolve the entire stack of filters. As a 
result, TalkToModel is capable of addressing instances of anaphora and 
ellipsis by using these operations to resolve the entity via co-reference 
or infer it from the previous conversation history. This dynamic enables 
users to have complex and natural conversations with TalkToModel.

Parsing dataset generation. To parse user utterances into the gram-
mar, we fine-tune an LLM to translate utterances into the grammar in a 
seq2seq fashion. We use LLMs because these models have been trained 
on large amounts of text data and are solid priors for language under-
standing tasks. Thus, they can better understand diverse user inputs 
than training from scratch, improving the user experience. Further, we 
automate the fine-tuning of an LLM to parse user utterances into the 
grammar by generating a training dataset of (utterance, parse) pairs. 
Compared with dataset-generation methods that use human annota-
tors to generate and label datasets for training conversation models55,56, 
this approach is much less costly and time consuming, while still being 
highly effective, and supports users getting conversations running very 
quickly. This strategy consists of writing an initial set of user utterances 
and parses, where parts of the utterances and parses are wildcard terms. 
TalkToModel enumerates the wildcards with aspects of a user-provided 
dataset, such as the feature names, to generate a training dataset. 
Depending on the user-provided dataset schema, TalkToModel typi-
cally generates anywhere from 20,000 to 40,000 pairs. Last, we have 
already written the initial set of utterances and parses, so users only 
need to provide their dataset to set up a conversation.

Semantic parsing. Here we provide additional details about the seman-
tic parsing approach for translating user utterances into the grammar. 
The two strategies for parsing user utterances using pre-trained LLMs 
that we considered were (1) few-shot GPT-J28 and (2) fine-tuned T530. 
With respect to the few-shot models, because the LLM’s context win-
dow accepts only a fixed number of inputs, we introduce a technique 

Table 3 | User study results for completion rate and accuracy across interfaces and participant groups

Questions completed (%) Accuracy on completed questions (%)

Dashboard TalkToModel Dashboard TalkToModel

Healthcare workers 74.7 86.2 66.1 91.8

ML graduate students 73.8 93.9 62.5 100.0

We computed the completion rate as the questions users provided an answer for and did not mark ‘Could not determine’. We measured accuracy on completed questions. Participants 
answered questions at a higher rate more accurately using TalkToModel than the dashboard.
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to select the set of most relevant prompts for the user utterance. In 
particular, we embed all the utterances and identify the closest utter-
ances to the user utterance according to the cosine distance of these 
embeddings. To ensure a diverse set of prompts, we select only one 
prompt per template. We prompt the LLM using these (utterance, 
parse) pairs, ordering the closest pairs immediately before the user 
utterance because LLMs exhibit recency biases57. Using this strategy, 
we experiment with the number of prompts included in the LLM’s 
context window. In practice, we use the all-mpnet-base-v2 sentence 
transformer model to perform the embeddings33, and we consider the 
GPT-J 6B, GPT-Neo 2.7B and GPT-Neo 1.3B models in our experiments.

We also fine-tune pre-trained T5 models in a seq2seq fashion 
on our datasets. To perform fine-tuning, we split the dataset using a 
90%/10% train/validation split and train for 20 epochs to maximize 
the next token likelihood with a batch size of 32. We select the model 
with the lowest validation loss at the end of each epoch. We fine-tune 
with a learning rate of 1 × 10−4 and the AdamW optimizer58. Last, our 
experiments consider the T5 small, base and large variants.

Generating responses. After TalkToModel executes a parse, it com-
poses the results of the operations into a natural language response that 
it returns to the user. TalkToModel generates these responses by filling 
in templates associated with each operation based on the results. The 
responses also include sufficient context to understand the results and 
opportunities for following up (examples in Table 2). Further, because 
the system runs multiple operations in one execution, TalkToModel 
joins response templates, ensuring semantic coherence, into a final 
response and shows it to the user. Compared with approaches that 
generate responses using neural methods59, this approach ensures that 
the responses are trustworthy and do not contain useless information 
hallucinated by the system, which would be a very poor user experience 
for the high-stakes applications we consider. Further, because TalkTo-
Model supports a wide variety of different operations, this approach 
ensures sufficient diversity in responses, so they are not repetitive.

Executing parses
In this section, we provide an overview of the execution engine, which 
runs the operations necessary to respond to user utterances in the 
conversation. Further, this component automatically selects the most 
faithful explanations for the user, helping ensure explanation accuracy.

Feature importance explanations. At its core, TalkToModel explains 
why the model makes predictions to users with feature importance 
explanations. Feature importance explanations ϕ(x, f) → ϕ accept a 
data point x ∈ ℝd  with d features and model as input f(x) → y, where 
y ∈ [0, 1] is the probability for a particular class, and generates a feature 
attribution vector ϕ ∈ ℝd, where greater magnitudes correspond to 
higher importance features6,7,60–63.

We implement the feature importance explanations using post 
hoc feature importance explanations. Post hoc feature importance 
explanations do not rely on internal details of the model f (for example, 
internal weights or gradients) and only on the input data x and predic-
tions y to compute explanations, so users are not limited to only certain 
types of model64–68. Note that our system can easily be extended to 
other explanations that rely on internal model details, if required4,8,69,70.

Explanation selection. While there exists several post hoc explana-
tion methods, each one adopts a different definition of what consti-
tutes an explanation71. For example, while local interpretable model 
agnostic explanations (LIME), Shapley additive explanations (SHAP) 
and integrated gradients all output feature attributions, LIME returns 
coefficients of local linear models, SHAP computes Shapley values and 
integrated gradients leverages model gradients. Consequently, we 
automatically select the most faithful explanation for users, unless a 
user specifically requests a certain technique. Following previous works, 

we compute faithfulness by perturbing the most important features 
and evaluating how much the prediction changes72. Intuitively, if the 
feature importance ϕ correctly captures the feature importance rank-
ing, perturbing more important features should lead to greater effects.

While previous works65,73, compute the faithfulness over many 
different thresholds, making comparisons harder, or require retrain-
ing entirely from scratch, we introduce a single metric that captures 
the prediction sensitivity to perturbing certain features called the 
fudge score. This metric is the mean absolute difference between 
the model’s prediction on the original input and a fudged version on 
m ∈ {0, 1}d features

Fudge𝒩 f,x,m) = 1
N

N
∑
n=1

| f𝒩x) − f𝒩x + ϵn ⊙m)| (1)

where ⊙ is the tensor product and ϵ ≈ 𝒩𝒩𝒩0, Iσ)  is N × d-dimensional 
Gaussian noise. To evaluate faithfulness for a particular explanation 
method, we compute area under the fudge score curve on the top-k 
most important features, thereby summarizing the results into a single 
metric

𝒩k,ϕ) = {
1 ifϕi ∈ arg max

ϕ′⊂{1…d},|ϕ′ |=k
∑i∈ϕ′ |ϕi|

0 otherwise
(2)

Faith𝒩ϕ, f, x, K) =
K
∑
k=1

Fudge𝒩f, x, 𝒩k,ϕ)) (3)

where 𝒩k,ϕ) is the indicator function for the top-k most important 
features. Intuitively, if a set of feature importances ϕ correctly identi-
fies the most important features, perturbing them will have greater 
effects on the model’s predictions, resulting in higher faithfulness 
scores. We compute faithfulness for multiple different explanations 
and select the highest. In practice, we consider LIME64 with the follow-
ing kernel widths [0.25, 0.50, 0.75, 1.0] and KernelSHAP74. We leave all 
settings to default besides the kernel widths for LIME. In practice, we 
set σ = 0.05 to ensure that perturbations happen in the local region 
around the prediction, K to floor𝒩 d

2
), and N = 10,000 to sample suffi-

ciently. One complication arises for categorical features, where we 
cannot apply Gaussian perturbations. For these features, we randomly 
sample these features from a value in the dataset column 30% of the 
time to guarantee that the feature remains categorical under perturba-
tion. Last, if multiple explanations return similar fidelities, we use the 
explanation stability metric proposed in ref. 75 to break ties, because 
it is much more desirable for the explanation to robust to perturba-
tions7,76. To use the stability metric proposed in ref. 75 to break ties if 
the explanations fidelities are quite close (less than δ = 0.01), we com-
pute the Jaccard similarity between feature rankings instead of the L2 
norm as is used in their work. The reason is that the norm might not be 
comparable between explanation types, because they have different 
ranges, while the Jaccard similarity should not be affected. Further, we 
compute the area under the top-k curve using the Jaccard similarity 
stability metric, as in equation (3), to make this measure more robust.

Additional explanation types. As users will have explainability 
questions that cannot be answered solely with feature importance 
explanations, we include additional explanations to support a wider 
array of conversation topics. In particular, we support counterfactual 
explanations and feature interaction effects. These methods enable 
conversations about how to get different outcomes and whether fea-
tures interact with each other during predictions, supporting a broad 
set of user queries. We implement counterfactual explanations using 
diverse counterfactual explanations, which generates a diverse set 
of counterfactuals77. Having access to many plausible counterfactu-
als is desirable because it enables users to see a breadth of different, 
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potentially useful, options. Also, we implement feature interaction 
effects using the partial dependence based approach from ref. 78 
because it is effective and quick to compute.

Exploring data and predictions. Because the process of understand-
ing models often requires users to inspect the model’s predictions, 
errors and the data, TalkToModel supports a wide variety of data and 
model exploration tools. For example, TalkToModel provides options 
for filtering data and performing what-if analyses, supporting user que-
ries that concern subsets of data or what would happen if data points 
change. Users can also inspect model errors, predictions, prediction 
probabilities, compute summary statistics, and evaluation metrics 
for individuals and groups of instances. TalkToModel additionally 
supports summarizing common patterns in mistakes on groups of 
instances by training a shallow decision tree on the model errors in 
the group. Also, TalkToModel enables descriptive operations, which 
explain how the system works, summarize the dataset and define terms 
to help users understand how to approach the conversation. Overall, 
TalkToModel supports a rich set of conversation topics in addition to 
explanations, making the system a complete solution for the model 
understanding requirements of end users.

Extensibility
While we implement TalkToModel with several different choices for 
operations such as feature importance explanations and counterfac-
tual explanations, TalkToModel is highly modular and system design-
ers can easily incorporate new operations or change existing ones by 
modifying the grammar to best support their user populations. This 
design makes TalkToModel straightforward to extend to new settings, 
where different operations may be desired.

Broader impact statement. The TalkToModel system and, more gen-
erally, conversational model explainability can be applied to a wide 
range of applications, including financial, medical or legal applications. 
Our research could be used to improve model understanding in these 
situations by improving transparency and encouraging the positive 
impact of ML systems, while reducing errors and bias. Although Talk-
ToModel has many positive applications, the system makes it easier 
for those without high levels of technical expertise to understand 
ML models, which could lead to a false sense of trust in ML systems. 
In addition, because TalkToModel makes it easier to use ML model 
for those with lower levels of expertise, there is additionally a risk 
of inexperienced users applying ML models inappropriately. While 
TalkToModel includes several measures to prevent such risks, such as 
qualifying when explanations or predictions are inaccurate, and clearly 
describing the intended purpose of the ML model, it would be useful for 
researchers to investigate and possible adopters to be mindful of these 
considerations. While completing this research, the authors complied 
with all relevant ethical regulations of human research.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The German credit, COMPAS and diabetes datasets and models can 
be found at https://github.com/dylan-slack/TalkToModel/tree/
main/data. The fine-tuned language models used for TalkToModel 
for each of these datasets can be found at https://huggingface.co/
dslack/all-finetuned-ttm-models. The mturk-generated dataset used 
to assess parsing accuracy and the accuracy results can be found at 
https://github.com/dylan-slack/TalkToModel/tree/main/experi-
ments/parsing_accuracy. The user study response data are provided 
at https://github.com/dylan-slack/TalkToModel/blob/main/data/
ttm-user-study-responses.csv.

Code availability
We release an open-source implementation of TalkToModel at 
https://github.com/dylan-slack/TalkToModel79. Beyond the methods 
described so far, this release includes visualizations for conversations, 
interactive tooling to help users construct questions, saving results 
and conversation environments so they can be shared, abstractions 
for creating new operations and synthetic datasets, routines to adapt 
TalkToModel to new models and datasets automatically, and runtime 
optimizations (generating responses typically takes <2 seconds).
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