Schedule
Subject to change.
Wed 11 Jan 2017
Lecture 1: Introduction to Deep Learning
Wed 18 Jan 2017
Lecture 2: Intro to Deep Learning Software and Hardware
Feedforward Networks
Mon 23 Jan 2017
Lecture 3: Deep Feedforward Networks
Wed 25 Jan 2017
Lecture 4: Optimization
Mon 30 Jan 2017
Lecture 5: Convolutional Neural Networks
Wed 1 Feb 2017
Lecture 6: Convolutional Neural Networks
Time Series Models
Mon 6 Feb 2017
Lecture 7: Recurrent Neural Networks
Wed 8 Feb 2017
Lecture 8: Dynamic Bayesian Networks
Reinforcement Learning
Mon 13 Feb 2017
Lecture 9: Deep RL, Discrete Action Spaces
Wed 15 Feb 2017
Lecture 10: Deep RL, Continuous Action Spaces
Applications & Practicals
Mon 20 Feb 2017
Lecture 11: Deep Learning in Practice
Wed 22 Feb 2017
Lecture 12: Biomedical Applications
Unsupervised Deep Learning
Monday 27 Feb 2017
Lecture 13: Linear Factor Models
- [required] Book: Goodfellow -- Chapter 13 -- Linear Factor Models
- [required] Book: Murphy -- Chapter 12 -- Latent Linear Models
- [optional] Video: Zoubin Ghahramani -- Graphical Models
- [required] Paper: Sam Roweis and Zoubin Ghahramani. A Unifying Review of Linear Gaussian Models. Neural Computation 11(2), 1999.
Mon 13 March 2017
Lecture 14: Autoencoders
Wed 15 March 2017
Lecture 15: Introduction to Boltzmann Machines
Mon 20 March 2017
Lecture 16: Unsupervised Time Series Modeling
Wed 22 March 2017
Midterm Project Presentations
Sampling and Inference Procedures
Mon 27 March 2017
Lecture 17: Sampling Techniques
- [required] Book: Goodfellow -- Chapter 17 -- Monte Carlo Methods
- [optional] Book: Murphy -- Chapter 23, Section 23.1-23.4 -- Monte Carlo Inference
- [optional] Book: Murphy -- Chapter 24, Sections 24.1-24.4 -- Markov Chain Monte Carlo (MCMC) Inference
- [optional] Book: Murphy -- Chapter 24, Sections 24.5-24.7 -- Markov Chain Monte Carlo (MCMC) Inference
- [optional] Video: Iain Murray -- Markov Chain Monte Carlo
- [optional] Video: de Freitas -- Monte Carlo Simulation for Statistical Inference
- [optional] Video: Christian Robert -- Markov Chain Monte Carlo Methods
Wed 29 March 2017
Lecture 18: Approximate Inference
- [required] Book: Goodfellow -- Chapter 18-19 -- Partition Function and Approximate Inference
Deep Generative Models
Mon 3 April 2017
Lecture 19: Restricted Boltzmann Machine
- [required] Book: Goodfellow -- Chapter 20.3-20.5 -- Deep Boltzmann Machines
- [optional] Book: Murphy -- Chapter 27, Section 27.7 -- Latent Variable Models for Discrete Data
- [optional] Video: Geoffrey Hinton -- Deep Belief Networks
- [optional] Video: Yoshua Bengio and Yann LeCun -- Tutorial on Deep Learning Architectures
Wed 5 April 2017
Lecture 20: Recurrent Temporal RBM
Mon 10 April 2017
Lecture 21: Helmholtz Machines I
Wed 12 April 2017
Lecture 22: Helmholtz Machines II
Deep Learning research
Mon 17 April 2017
Mon 19 April 2017
Final Presentations and Reports
Mon 24, Wed 26 April 2017
- Final Project Presentations
May 1 2017
- Final Project Reports Due